REGRESSION EQUATION FOR THE PEAK WIND GUST 6 TO 12 HOURS IN ADVANCE AT GREAT FALLS DURING STRONG DOWNSLOPE WIND STORMS

Michael J. Oard

National Weather Service Western Region
Salt Lake City, Utah
July 1980
The National Weather Service (NWS) Western Region Subseries provides an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication. The series is used to report on the development of new ideas, to disseminate procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily to regional and local problems of interest mainly to personnel, and hence will not be widely distributed.

Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Western Region Technical Memoranda (WRTM); papers 26 to 59 are in the former series, ESSA Technical Memoranda, Western Bureau Technical Memoranda (WBTM). Beginning with 60, the papers are part of the ESSA Technical Memoranda Subseries. Out-of-print memoranda are not listed (inclusive, i-145).

Papers 2 to 22, except for 5 (revised edition), are available from the National Weather Service Western Region, Scientific Services Division, P. O. Box 1188, Federal Building, 123 South State Street, Salt Lake City, Utah 84147. Paper 5 (revised edition), and all others beginning with 25 are available from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22151. Prices vary for all paper copy: $2.25 microfiche. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda, Western Bureau Technical Memoranda (WBTM)

4 Station Descriptions of Local Effects on Synoptic Weather Patterns. Philip Williams, Jr., April 1966 (revised November 1967). (PB-17790)
8 A Digitized Summary of Radar Echoes within 100 Miles of Sacramento, California. A. Y. Youngberg and L. B. Ovejeas, December 1966.
20 Forecasting Maximum Temperatures at Helena, Montana. David E. Olsen, October 1969. (PB-185762)
22 Applications of the Lat Radar to Short-Range Fog and Stratus Forecasting at Eugene, Oregon. Lee Yee and E. Bates, December 1969. (PB-90476)
25 Predicting Precipitation Type. Robert J. C. Burnash and Floyd Hug, March 1970. (PB-190262)
29 A Refinement of the Vorityclity Field to Delineate Areas of Significant Precipitation. Barry B. Aronovitch, August 1970
30 Application of the $SSRR$ Model to a Basin without Drainage. Wall E. Sawyer and Donald W. Kuehl, August 1970. (PB-194394)

NOAA Technical Memoranda (WRS WM)

21 An Aid for Forecasting the Minimum Temperature at Medford, Oregon. Arthur W. Frits, October 1970. (COM-71-00120)
22 Forecasting the Catalina Eddy. Arthur L. Eichelberger, February 1971. (COM-71-00223)
23 70-80 Warm Air Advacation as a Forecasting Tool for Montana and Northern Idaho. April E. Woolner, February 1971. (COM-71-00349)
26 National Weather Service Support to Soaring Activities. Ellis Burton, August 1971. (COM-71-00996)
27 Western Regional Synoptic Weather Patterns and Methods. Philip Williams, Jr., February 1972. (COM-72-10453)
31 A Study of Radar Echo Distribution in Arizona during July and August. John E. Hales, Jr., July 1972. (COM-72-11136)
32 Forecasting Precipitation at Bakersfield, California, Using Pressure Gradient Velocities. Earl T. Riddle, July 1972. (COM-72-11124)
33 Climate of Stockton, California. Robert C. Nelson, July 1972. (COM-72-10290)
34 A Preliminary Study of Number of Days Above and Below Selected Temperatures. Clarence M. Sakamoto, October 1972. (COM-72-10221)
38 A Digitalized Building, 5285 Port Royal Road, Springfield, Virginia 22151.
39 Southern United States Summer Monsoon Source--Gulf of Mexico or Pacific Ocean? John E. Hales, Jr., March 1973. (COM-73-10769)
NOAA Technical Memorandum NWS WR-154

REGRESSION EQUATION FOR THE PEAK WIND GUST 6 TO 12 HOURS IN ADVANCE AT GREAT FALLS DURING STRONG DOWNSLOPE WIND STORMS

Michael J. Oard
Weather Service Forecast Office
Great Falls, Montana
July 1980
This Technical Memorandum has been reviewed and is approved for publication by Scientific Services Division, Western Region.

L. W. Snellman, Chief
Scientific Services Division
Western Region Headquarters
Salt Lake City, Utah
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables and Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>I. General Synoptic Pattern</td>
<td>1</td>
</tr>
<tr>
<td>II. Procedure</td>
<td>2</td>
</tr>
<tr>
<td>III. Results</td>
<td>5</td>
</tr>
<tr>
<td>IV. Verification</td>
<td>7</td>
</tr>
<tr>
<td>V. Acknowledgments</td>
<td>7</td>
</tr>
<tr>
<td>VI. References</td>
<td>8</td>
</tr>
</tbody>
</table>
TABLES AND FIGURES

Table 1. Peak Wind Gusts and the Time of Occurrence for Various Stations Along the East Slopes of the Rockies on December 4, 1979 .. 3

Table 2. Multiple Regression Predictors and Correlation Coefficients with the Peak Gust at Great Falls 6-12 Hrs. in Advance. Station WVK is Vernon, B.C. 4

Table 3. Average Peak Gust for Several Stations Along the East Slopes of the Rockies During Downslope Wind Storms from October 1, 1978 to March 31, 1979 6

Figure 1. Redrawn NMC 500mb Chart for 00Z, December 4, 1979. ... 9
Figure 2. Redrawn NMC Surface Chart for 00Z, December 4, 1979. ... 9
Figure 3. Redrawn NMC 500mb Chart for 12Z, December 4, 1979 ... 9
Figure 4. Redrawn NMC Surface Chart for 12Z, December 4, 1979 ... 9
Figure 5. Redrawn NMC 500mb Chart for 00Z, December 5, 1979. ... 9
Figure 6. Redrawn NMC Surface Chart for 00Z, December 5, 1979. ... 9
Introduction

Strong downslope winds are common in Montana along the East Slopes of the Rockies from Fall to Spring. Wind gusts over 100 MPH occur in some areas each year producing property damage and personal injuries. These winds occur in a variety of synoptic weather patterns, but the most frequent with the strongest winds occur in well-defined warm air advection patterns ahead of an eastward advancing upper trough (Figures 1 to 6). This suggests that the speed of downslope winds for the above cases can be objectively predicted with a multiple regression equation similar to the MOS equations produced by TDL. This paper describes the development and verification of a regression equation for the peak wind gust 6 to 12 hours in advance at Great Falls. The purpose of this research project was an objective criterion that would alert the forecaster to the synoptic potential for damaging winds, so that a high wind warning can be issued well in advance, if needed.

I. GENERAL SYNOPTIC PATTERN

A typical synoptic sequence that produced strong downslope winds along the East Slopes of the Rockies is presented in Figures 1 to 6. These are the 500-mb and surface maps for 00Z and 12Z, December 4, 1979 and 00Z, December 5, 1979. Several features are worth noting as they relate to strong downslope winds: (1) the upper winds at 500 mb are strong through Montana, (2) the upper trough is of moderate strength with the vorticity center moving eastward just north of Montana, and (3) a surface low-pressure center develops in Southern Alberta, moves east and continues deepening.

Ideally, a high wind warning should be issued well in advance for cases like this. The high wind warning criterion for the Western Region of the National Weather Service is sustained winds greater than 35 kts and/or gusts greater than 48 kts. The evening of December 3rd, or the early morning of the 4th would be the time to issue a high wind warning in this case. However, there are several practical factors that may hinder this. One problem is that high wind situations often do not look very impressive as precipitation producers, which forecasters especially focus on. In this case, southwest winds would be expected along the East Slopes of the Rockies, but possibly not in the warning category since an upper ridge is over Montana and the upper trough is in the Eastern Pacific at the time the warning should be issued (Figures 1 and 3). This illustrates a persistent problem for Western Region forecasters: the initial analysis in the Eastern Pacific. The fact that the surface low deepened rapidly by 12Z, December 4th, in Southern Alberta after having moved inland and that the coldest air at 500 mb (not shown) was already in British Columbia strongly indicates that the 500-mb trough at 12Z had already moved to just off the coast. This is about 10° farther east than on the NMC analysis.
(Figure 3). If this chart had been analyzed as suggested, it would have looked much more potent for strong winds in Montana, which actually had already begun at Cut Bank and Lethbridge, Alberta (Table 1). Another possible problem is that a new forecaster may not be familiar with strong wind patterns in Montana which many times deviate from the general pattern and can have subtle synoptic peculiarities. Even an experienced forecaster may have difficulty forecasting high winds in this case and in non-typical cases, especially if he has not forecast during a high wind pattern for several months.

As it turned out, this case produced widespread strong winds in the warning category. Great Falls airport received a peak gust of 45 kts, but much stronger winds blew at other locations along the East Slopes of the Rockies (Table 1). Property damage was estimated to be between $50,000 and $500,000.[1]

II. PROCEDURE

Since the purpose of developing a regression equation was to predict winds in the high wind warning category, a peak wind gust equal to or greater than 25 kts at Great Falls 6 to 12 hours after observation time was the dependent variable or predictand. A threshold speed of 25 kts was chosen because wind gusts below this value occur frequently in a wide range of weather patterns and would thus add too much variability and decrease predictability. The sample was further narrowed to the most frequent and clearly defined patterns of only warm air or neutral advection patterns with a southwesterly to westerly mean upper flow over North America. Sometimes, the full potential of warm pre-frontal winds from an approaching upper trough was not realized until the frontal passage. Therefore, wind gusts within two hours after the frontal passage were included in the developmental sample. After experimenting with three time intervals, the period of 6 to 12 hours after observation time was chosen because, (1) it provided a good lead time, but (2) was not too long from observed data for the correlation to deteriorate too much.

Thirty-eight independent variables or predictors were selected to run on a multiple regression computer program. Table 2 lists these predictors and their correlation coefficients with the predictand. These variables fall into four main groups: the 700-mb height gradient, the surface pressure gradient, the 700-mb height-change gradient, and the 3-hour surface isallobaric gradient. The first two groups indicate the current strength of the weather system while the last two are a measure of the future development and speed and direction of movement. These were selected after examining a large number of strong wind cases and from calculating correlation coefficients with the predictand during the 1978-79 windy season (generally from October 1st to March 31st). Other main variables were tried during the project and found to have a poorer correlation and to be represented by one of the selected main groups. These were the 850-mb height gradient, the 12-hour surface isallobaric gradient, and the 500-mb height-change gradient. Height gradients were used instead of actual upper winds because Sangster [2,3] found the former better in developing a prediction equation for strong downslope winds at Boulder, Colorado. The reason for this probably is that the height and ruggedness of the terrain to
Table 1.

Peak Wind Gusts and the Time of Occurrence for Various Stations Along the East Slopes of the Rockies on December 4, 1979

<table>
<thead>
<tr>
<th>STATION</th>
<th>PEAK GUST (KT)</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Falls</td>
<td>45</td>
<td>18Z</td>
</tr>
<tr>
<td>Malmstrom AFB, Great Falls</td>
<td>50</td>
<td>18Z</td>
</tr>
<tr>
<td>Billings</td>
<td>46</td>
<td>19Z</td>
</tr>
<tr>
<td>Cut Bank</td>
<td>52</td>
<td>10Z</td>
</tr>
<tr>
<td>Lewistown</td>
<td>54</td>
<td>19Z</td>
</tr>
<tr>
<td>Havre</td>
<td>58</td>
<td>22Z</td>
</tr>
<tr>
<td>Lethbridge, Alberta</td>
<td>58</td>
<td>11Z</td>
</tr>
<tr>
<td>Harlowtown</td>
<td>64</td>
<td>16Z</td>
</tr>
<tr>
<td>Livingston</td>
<td>70</td>
<td>20Z</td>
</tr>
<tr>
<td>Big Timber</td>
<td>83</td>
<td>MM</td>
</tr>
<tr>
<td>Chateau</td>
<td>90</td>
<td>MM</td>
</tr>
</tbody>
</table>
Table 2.

Multiple Regression Predictors and Correlation Coefficients with the Peak Gust at Great Falls 6-12 Hrs. in Advance. Station WVK is Vernon, B.C.

<table>
<thead>
<tr>
<th>PREDICTOR</th>
<th>CORRELATION COEFFICIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>700mb HEIGHT GRADIENT</td>
<td></td>
</tr>
<tr>
<td>1. LND-GTF</td>
<td>.51</td>
</tr>
<tr>
<td>2. LND-YXD</td>
<td>.59</td>
</tr>
<tr>
<td>3. LND-YXS</td>
<td>.46</td>
</tr>
<tr>
<td>4. GTF-YXD</td>
<td>.53</td>
</tr>
<tr>
<td>5. BOI-YXD</td>
<td>.71</td>
</tr>
<tr>
<td>6. BOI-YXS</td>
<td>.61</td>
</tr>
<tr>
<td>7. MFR-YXS</td>
<td>.66</td>
</tr>
<tr>
<td>8. MFR-YXD</td>
<td>.66</td>
</tr>
<tr>
<td>9. GEG-YXS</td>
<td>.50</td>
</tr>
<tr>
<td>10. GEG-WVK</td>
<td>.57</td>
</tr>
<tr>
<td>11. UIL-YXS</td>
<td>.46</td>
</tr>
<tr>
<td>12. SLE-WVK</td>
<td>.60</td>
</tr>
<tr>
<td>SURFACE PRESSURE GRADIENT</td>
<td></td>
</tr>
<tr>
<td>13. IDA-YSH</td>
<td>.45</td>
</tr>
<tr>
<td>14. IDA-GTF</td>
<td>.49</td>
</tr>
<tr>
<td>15. IDA-YYC</td>
<td>.44</td>
</tr>
<tr>
<td>16. BOI-GTF</td>
<td>.53</td>
</tr>
<tr>
<td>17. BOI-YYC</td>
<td>.49</td>
</tr>
<tr>
<td>18. BOI-YXH</td>
<td>.49</td>
</tr>
<tr>
<td>19. BOI-GEG</td>
<td>.55</td>
</tr>
<tr>
<td>20. GEG-YYC</td>
<td>.23</td>
</tr>
<tr>
<td>700mb HEIGHT CHANGE GRADIENT</td>
<td></td>
</tr>
<tr>
<td>21. LND-GTF</td>
<td>.16</td>
</tr>
<tr>
<td>22. LND-YXD</td>
<td>.25</td>
</tr>
<tr>
<td>23. LND-WVK</td>
<td>.20</td>
</tr>
<tr>
<td>24. GEG-WVK</td>
<td>.14</td>
</tr>
<tr>
<td>25. BOI-WVK</td>
<td>.14</td>
</tr>
<tr>
<td>26. BOI-YXS</td>
<td>.22</td>
</tr>
<tr>
<td>27. SLE-WVK</td>
<td>.07</td>
</tr>
<tr>
<td>28. SLE-YXS</td>
<td>.14</td>
</tr>
<tr>
<td>29. YZT-YXS</td>
<td>.13</td>
</tr>
<tr>
<td>3-HOUR SURFACE ISALLOBARIC GRADIENT</td>
<td></td>
</tr>
<tr>
<td>30. IDA-YXH</td>
<td>.17</td>
</tr>
<tr>
<td>31. IDA-GEG</td>
<td>.09</td>
</tr>
<tr>
<td>32. YZU-YXH</td>
<td>.24</td>
</tr>
<tr>
<td>33. YZU-GEG</td>
<td>.11</td>
</tr>
<tr>
<td>34. YZU-HLN</td>
<td>.25</td>
</tr>
<tr>
<td>35. YZU-YYC</td>
<td>.17</td>
</tr>
<tr>
<td>36. GTF-YXH</td>
<td>.15</td>
</tr>
<tr>
<td>37. IDA-HLN</td>
<td>.29</td>
</tr>
<tr>
<td>38. BOI-YXH</td>
<td>.18</td>
</tr>
</tbody>
</table>
the west causes low-level upper winds to be too variable and therefore, less correlated with surface winds than upper height gradients.

Data for the regression analysis was generously supplied by the Central Region Headquarters, where it had been stored previously on magnetic tape for use by the Severe Storms Forecast Center and by the Alberta Weather Center in Edmonton, Alberta. There was a fair amount of missing data in the former, some of which was found on local LCDs and on the Daily Weather Maps published by NOAA’s Environmental Data and Information Service. A total of 138 cases from October 1, 1972 to December 31, 1976, were used for the developmental samples. Only wind gusts greater than or equal to 40 kts were selected before March 31, 1974, in order to balance the more numerous lower wind cases. The computer program used for the project is a four step Fortran 4 multiple regression program developed by the author and adapted to the AFOS computer at the Great Falls Forecast Office.

III. RESULTS

The resulting four variable regression equation with the predictors listed in the order selected is:

\[
\text{GTF WND GST} = 18.4 + 0.07(\text{BOI 700MB HGT} - \text{YXD 700MB HGT}) \\
+ 0.10(\text{IDA 3HR SFC PRES CHG} - \text{HLN 3HR SFC PRES CHG}) \\
+ 0.04(\text{MFR 700MB HGT} - \text{YXS 700MB HGT}) \\
+ 0.04(\text{LND 700MB HGT CHG} - \text{GTF 700MB HGT CHG})
\]

700-mb heights and height changes are in meters and the surface-pressure changes are in tenths of millibars. The reduction in variance is 57%. The first variable, which represents the present winds aloft along the East Slopes of the Rockies, is the most important variable, having the highest correlation coefficient in Table 2. In practice, the third variable is fairly strong also, corresponding to the upstream winds aloft, which are often found in the forecast area 12 hours later. The second and fourth variables, which add to the wind speed when the pressure and upper heights fall more over Montana than farther south, were small most of the time. Essentially, the Great Falls wind depends upon the strength of the flow aloft at 700mb.

In order to objectively extend the predicted peak-wind gust at Great Falls to other areas along the East Slopes of the Rockies, average peak gusts from October 1, 1978, to March 31, 1979, for several other stations were calculated (Table 3). Cut Bank and Livingston average higher than Great Falls, but it is qualitatively known that other areas have stronger winds than even Livingston, which is well known for strong winds. East Glacier, Montana, where a recording wind gage is located and gusts called into the Great Falls Forecast Office during strong winds, is one of these stations. It is claimed that the wind speeds there are about 15 kts higher than at Livingston, and unofficial reports tend to substantiate this. Other locations that blow nearly as strong or stronger than Livingston are Stanford, Geyser, Big Timber, Judith Gap, Browning, and Chateau, Montana. Considering the number of areas that have stronger down-
Table 3.

Average Peak Gust for Several Stations Along the East Slopes of the Rockies During Downslope Wind Storms from October 1, 1978, to March 31, 1979

<table>
<thead>
<tr>
<th>STATION</th>
<th>AVERAGE PEAK GUST (KT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billings</td>
<td>26</td>
</tr>
<tr>
<td>Lewistown</td>
<td>27</td>
</tr>
<tr>
<td>Havre</td>
<td>27</td>
</tr>
<tr>
<td>Great Falls</td>
<td>36</td>
</tr>
<tr>
<td>Cut Bank</td>
<td>41</td>
</tr>
<tr>
<td>Livingston</td>
<td>49</td>
</tr>
</tbody>
</table>
slope winds than Great Falls, a useful criterion for considering a high wind
warning for other areas along the East Slopes of the Rockies would be a predicted
peak gust at Great Falls of 35 kts or more. This is assuming there is no over­
forecasting bias in the wind-speed equation, which there indeed is as the veri­
fication sample demonstrates. This bias is about 4 kts. In the example presented
in Figures 1 to 6, the predicted peak gust at Great Falls from 00Z and 12Z,
December 4th, data was 41.5 kts and 54.5 kts respectively. These estimates are
clearly into the high wind warning category from the above criterion and even
though they overestimated the wind at Great Falls airport, they were a good
indication of future wind gusts elsewhere along the East Slopes of the Rockies.
Also, they do not depend upon a correct initial analysis in the Eastern Pacific.

IV. VERIFICATION

The wind equation was used operationally and verified for the 1979-80 windy
season. A simple Fortran 4 computer program was written and incorporated into
an AFOS procedure to facilitate this. It was used when the forecaster judged
that the weather pattern would likely produce moderate to strong winds and met
all the developmental criteria. Since the wind equation was designed for strong
winds, the verification includes only wind gusts greater than or equal to 35 kts,
either predicted or observed. Lower wind speeds, which are influenced greatly
by the diurnal cycle, did not verify well. Only two cases of observed wind
gusts greater than or equal to 35 kts did not make the verification sample.
This was during a long period of downslope winds, when the procedure was run 12
hours previously, and the forecaster did not feel it was significant enough
to run again while the wind continued to blow.

From a total of 30 cases, the average error was 7.5 kts with an overforecasting
bias of 6.2 kts. A case by case study revealed that some of the error was due
to the timing of the strongest gusts because of local effects, fast or slow
moving upper troughs, of just random variations in gustiness. It is concluded
that a verification period of only 6 hours was not enough to catch the full
potential of the weather pattern. Allowing a longer period from 3 to 15 hours
after observation time, the average error was reduced to 5.9 kts and the bias
to 4.2 kts. With this experience, the regression formula will be revised for
the next season to include a 12-hour verification interval, and the constant
term will be reduced from 18.4 to 14.2.

V. ACKNOWLEDGMENTS

The author appreciates the efforts of a number of individuals, without whose
help, this project would never have started. In particular, I thank Wayne
Sangster, SSD, Central Region Headquarters and Peter Kociuba of the Alberta
Weather Centre for generously supplying the data. Also, I thank Jim Fors
and Len Snellman of SSD, Western Region Headquarters, for providing the data
for many of the strong wind case studies and for offering advice in the pre­
paration of the manuscript. Finally, appreciation is extended to the personnel
of WSFO, Great Falls, who helped during various phases of the work, especially
Ken Mielke who gave advice on adapting the regression program to AFOS, and Warren Harding, whose synoptic expertise aided in pinpointing many related wind variables.

VI. REFERENCES

Part i.

The BART Experiment. Morris Lichtenstein, Baruch Fischhoff, April 1979. (PB298674/AS)

104 Objective Aids for Forecasting Minimum Temperatures at Reno, Nevada, During the Summer Months. Christopher D. Hill, January 1976. (PB-252-866/AS)

107 Map Types as Aids in Using MOS PoPs in Western United States. Ira S. Brenner, August 1976. (PB-259-594)

115 The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of K-value. R. F. Quiring, April 1977. (PB-272-831)

117 Relative Frequency of Occurrence of Warm Season Echo Activity as a Function of Stability Indices Computed from the Yucca Flat, Nevada, Rawinsondes. Darryl Randerson, June 1977. (PB-271-290/AS)

125 Flash-Flood Procedure. Ralph C. Hatch and Gerald Williams, May 1978. (PB-286-014/AS)

130 Application of a Spectrum Analyzer in Forecasting Ocean Swell in Southern California Coastal Waters. Lawrence P. Kieruff, January 1979. (PB292716/AS)

134 Aids for Forecasting Minimum Temperature In the Wenatchee Frost District. Robert S. Robinson, April 1979. (PB298359/AS)

137 The Usefulness of Data from Mountaintop Fire lookout Stations in Determining Atmospheric Stability. Jonathan W. Corey, April 1979. (PB298699/AS)

139 Arizona Cool Season Climatological Surface Wind and Pressure Gradient Study. Ira S. Brenner, May 1979. (PB298600/AS)

140 On the Use of Solar Radiation and Temperature Models to Estimate the Snap Bean Maturity Date in the Willamette Valley. Earl M. Bates, August 1979.

141 The BART Experiment. Morris S. Webb, October 1979. (PB80155112)

142 Occurrence and Distribution of Flash Floods in the Western Region. Thomas L. Dietrich, December 1979.

147 Climate of Salt Lake City, Utah. Wilbur E. Figgins, June 1980.

The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA arc to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS — Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS — Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS — Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS — Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS — Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS — Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

ENVIRONMENTAL SCIENCE INFORMATION CENTER (D822)
ENVIRONMENTAL DATA AND INFORMATION SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
U.S. DEPARTMENT OF COMMERCE
6009 Executive Boulevard
Rockville, MD 20852