EASTERN NORTH PACIFIC TROPICAL CYCLONE OCCURRENCES DURING INTRASEASONAL PERIODS

Salt Lake City, Utah
February 1981
NOAA Technical Memorandum NWS WR-160

EASTERN NORTH PACIFIC TROPICAL CYCLONE OCCURRENCES DURING INTRASEASONAL PERIODS

Preston W. Leftwich and Gail M. Brown

National Hurricane Center
Miami, Florida
February 1981
This Technical Memorandum has been reviewed and is approved for publication by Scientific Services Division, Western Region.

L. W. Snellman, Chief
Scientific Services Division
Western Region Headquarters
Salt Lake City, Utah
CONTENTS

Abstract ... 1

1. Introduction .. 1

2. Data sources ... 2

3. Tracks and frequencies 3

4. Storm tracks .. 7

Acknowledgements ... 7

References .. 7

Appendix I. Tropical cyclone tracks by monthly periods,
 May - November ... 9

Appendix II. Tropical cyclone tracks by 15-day periods,
 May 16 - November 30 13

Appendix III. Tropical cyclone tracks by 10-day periods,
 May 11 - November 30 20
ABSTRACT. In conjunction with development of statistical models for prediction of tropical cyclone motion in the Eastern North Pacific Ocean, the National Hurricane Center (NHC) has compiled tracks of tropical cyclones occurring during the period 1949-1979. This study presents computer plots of these storm tracks for intraseasonal periods ranging from ten days to one month. Basic statistics concerning storm frequencies are also included.

1. INTRODUCTION

Tropical cyclones in the Eastern North Pacific basin, as elsewhere, are categorized by their maximum sustained surface winds. Tropical depressions have winds less than 34 knots (63 km/h), tropical storms have winds from 34 to 63 knots (63-117 km/h), and hurricanes have winds greater than 63 knots (119 km/h). For the purposes of this study, the Eastern North Pacific basin extends from the coasts of the United States, Mexico, and Central America westward to 140° west longitude and from approximately 5° to 35° north latitude. During the period 1949-1979, 337 tropical cyclones reaching at least tropical storm strength have been documented.

Previous studies have been made concerning the climatology of Eastern North Pacific tropical cyclones for specific interests. Eidemiller (1978) presented frequencies of tropical cyclones affecting the southwestern United States and northwestern Mexico. Court (1980) discussed tropical cyclones which affected coastal areas during the first half of this century. Renard and Bowman (1976) described the climatology and forecasting of storms in this basin using data for the period 1965-1972. Hansen (1972) presented climatologies of frequency, duration, intensity, and areas of formation and dissipation. More general discussions of the origin and development of tropical cyclones in this region were offered by Gray (1968, 1975). Statistics concerning motion and frequencies of Eastern North Pacific tropical cyclones are contained in Crutcher and Quayle (1974).

Development of a statistical model, EPCLPR, based on climatology and persistence (Neumann and Leftwich 1977), was the initial motivation for compilation of these storm tracks. These tracks were also used in development of another statistical model, EPHC77 (Leftwich and Neumann 1977), which includes 500-mb geopotential heights as predictors. Recent work has led to additions of wind and central sea-level pressure data to corresponding storm positions. Compiled
data have been stored on a computer card deck and a magnetic tape in a format described by Jarvinen and Caso (1978) for Atlantic tropical cyclones. These data will be available through the National Climatic Center, which is located in Asheville, North Carolina.

2. DATA SOURCES

Information used in preparation of charts and figures was extracted from the recently compiled data set. Basic storm tracks for the period 1949-1975 were acquired from the United States Navy in Monterey, California. Initially, storm positions were given at 12-h intervals. Interpolations of positions to 6-h intervals were made by use of a scheme devised by Akima (1970), with some subjective modifications. From 1976-1979, storm tracks were prepared by the Eastern Pacific Hurricane Center (EPHC) located in Redwood City, California. All tracks are smoothed so that they represent the large-scale motion of the storm's circulation. A thorough review of these storm tracks was made by Arnold Court under contract3 from the National Weather Service. His work concentrated on extensions of tracks inland and resulted in additions and/or modifications to 81 storm tracks included in our original data set. A final review, including checks for consistency as well as errors, was made once the data had been placed in our card deck.

Before the advent of operational meteorological satellites, land stations, ships at sea, and aerial reconnaissance reports provided information on tropical cyclones in the Eastern North Pacific basin. The greatest number of reports was received from ships at sea. Generally, these ships were traveling in the periphery of a storm's circulation, and the distance to the storm's center was unknown. As warnings became better, even fewer ships encountered the central regions of storms. Aerial reconnaissance was infrequent and concentrated into periods when a storm was threatening land areas. Passage of a storm directly over a land station was also infrequent. Undoubtedly, some weaker and short-lived storms in remote oceanic areas were not detected. Prior to 1965, tracks were only documented for tropical storms and hurricanes. From 1965-1979, depression stages have been included for both formative and dissipative stages. Tracks of all tropical depressions that did not reach at least tropical storm intensity have been excluded.

The first location of a tropical cyclone in the Eastern North Pacific Ocean by satellite was made by TIROS III on July 19, 1961 (Mull 1962). As in other tropical cyclone basins, advent of operational satellite coverage greatly increased the capability for detecting and tracking of storms. This is supported by the increase in the mean number of observed tropical cyclones per year from 8.6 for 1949-1964 to 14.6 for 1965-1979.

Classification of maximum intensity as hurricane versus tropical storm was not made prior to 1954. Intensity at various stages of the tracks was not documented until 1965, but development of techniques to estimate winds from satellite pictures has greatly enhanced availability of wind data in recent

3Contract NA-79-WD-C-00006.
years. Most wind speeds appearing in our data set were either taken from official advisories issued by the EPHC or estimated from information published in annual summaries appearing in the *Monthly Weather Review* or *Mariners Weather Log*.

3. TRACKS AND FREQUENCIES

Figure 1 is a computer plot of all tropical cyclone tracks in the recently compiled data set. Although little detail for individual storms is shown, such presentation depicts both the concentration and range of storm tracks in the Eastern North Pacific basin. Tracks of storms which developed in the Eastern North Pacific basin and moved west of 140°W are truncated at 140°W.

Figure 1. Computer plot of tracks of 337 Eastern North Pacific tropical cyclones during the 31-year period 1949 through 1979.
Figure 2 presents frequencies of storm occurrence for each year from 1949 to 1979. Prior to 1954, no distinctions were made between hurricanes and tropical storms. Storms reaching hurricane intensity are counted as tropical storms as well. For example, during 1974, 18 storms reached tropical storm strength and 11 of these also reached hurricane strength. The increase in number of storms observed after 1964 is evident in the graph. Peak tropical storm occurrence was 19 in both 1970 and 1978, and the peak hurricane occurrence was 13 in 1978. Only four tropical storms were recorded in 1953 and one hurricane was recorded in 1955, 1964 and 1965.

Figure 2. Annual distribution of 337 recorded tropical cyclones reaching at least tropical storm strength (open bar) and hurricane strength (shaded bar), 1949-1979.

Figures 3 and 4 depict the daily incidence of tropical cyclones in the Eastern North Pacific for the eight-month period May-December. If two storms existed on a given day, two storm occurrences were counted for that day. Frequencies have been smoothed (Figure 4) using a 15-day moving average in order to remove much of the "noise" inherent in the original data, but still retain larger-scale cycles. These smoothed frequencies indicate a general increase from mid-May to mid-July, with a slight drop in frequencies during the last half of June. A sharper drop in frequencies occurs during late July before an increase to the seasonal maximum near the end of August. This peak in daily frequencies occurs when both the number of storms and the lengths of
Figure 3. Number of tropical cyclones of at least tropical storm strength observed on each day, May 1 - December 31, 1949-1979.

their tracks are near maxima. Frequencies then show a general decline for the remainder of the season. These data may be compared to similar computations presented by Neumann et al. (1978) for the Atlantic basin.

Figure 5 shows cumulative frequencies of beginning and ending dates of the Eastern North Pacific tropical storm seasons for the period 1949-1979. Data are the first and last days of each year on which at least one tropical storm or hurricane existed. Mean season length is 134 days. A summary of these statistics is given in Table 1.
Figure 4. Same as Figure 3, but data smoothed by a 15-day moving average.

Table 1. Statistics concerning beginning and ending dates of Eastern North Pacific tropical cyclone seasons, 1949-1979.

<table>
<thead>
<tr>
<th></th>
<th>Beginning Date</th>
<th>Ending Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earliest</td>
<td>May 17</td>
<td>September 5</td>
</tr>
<tr>
<td>Latest</td>
<td>August 25</td>
<td>November 30</td>
</tr>
<tr>
<td>Mean</td>
<td>June 12</td>
<td>October 22</td>
</tr>
<tr>
<td>Median</td>
<td>June 7</td>
<td>October 19</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>20 days</td>
<td>18 days</td>
</tr>
</tbody>
</table>
4. STORM TRACKS

The various charts on the following pages present tropical cyclone tracks for several intraseasonal periods. These charts were produced on the NOAA FR-80 computer graphics system. Their purpose is graphical depiction of seasonal variations of characteristics of tropical cyclone tracks in the Eastern North Pacific basin. Storms are in the respective periods according to their first day of existence as documented in our compiled data set. No other identification is assigned to individual tracks. Appendix I presents storm tracks for monthly periods from May through November. Similar charts follow for 15-day (Appendix II) and 10-day (Appendix III) periods.

ACKNOWLEDGMENTS

The authors thank Sherri Morris and Brian Jarvinen for help in producing computer plots of storm tracks. Judy Kraus provided technical assistance in production of this report. Charles J. Neumann, Chief of the NHC Research and Development Unit, offered helpful comments.

REFERENCES

APPENDIX I

TROPICAL CYCLONE TRACKS BY MONTHLY PERIODS, MAY - NOVEMBER

EASTERN PACIFIC TROPICAL STORMS
ORIGINATING IN THE PERIOD
MAY
1949 - 1979
TOTAL = 10
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD JUN 1949 - 1979 TOTAL = 48

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD JUL 1949 - 1979 TOTAL = 76
Eastern Pacific tropical storms originating in the period 1949-1979

August: Total = 78

September: Total = 76
APPENDIX II

TROPICAL CYCLONE TRACKS BY 15-DAY PERIODS, MAY 16 - NOVEMBER 30

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
MAY 16-31
1949 - 1979
TOTAL = 10
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
JUN 01-15
1949 - 1979
TOTAL = 23

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
JUN 16-30
1949 - 1979
TOTAL = 25
ERSTERN PRC!F!C TRCP!CRL STORMS ORIGINATING IN THE PERIOD
JUL 01-15
1949 - 1979
TOTAL = 38

ERSTERN PRC!F!C TRCP!CRL STORMS ORIGINATING IN THE PERIOD
JUL 16-31
1949 - 1979
TOTAL = 38
EASTERN PACIFIC TROPICAL STORMS
ORIGINATING IN THE PERIOD
AUG 01-15
1949 - 1979
TOTAL = 27

EASTERN PACIFIC TROPICAL STORMS
ORIGINATING IN THE PERIOD
AUG 16-31
1949 - 1979
TOTAL = 51
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD

SEP 01-15
1949 - 1979
TOTAL = 42

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
SEP 16-30
1949 - 1979
TOTAL = 34
EASTERN PACIFIC TROPICAL STORMS
ORIGINATING IN THE PERIOD
OCT 01-15
1949 - 1979
TOTAL = 22

EASTERN PACIFIC TROPICAL STORMS
ORIGINATING IN THE PERIOD
OCT 16-31
1949 - 1979
TOTAL = 19
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD

NOV 01-15
1949 - 1979
TOTAL = 6

NOV 16-30
1949 - 1979
TOTAL = 2
APPENDIX III

TROPICAL CYCLONE TRACKS BY 10-DAY PERIODS, MAY 11 - NOVEMBER 30

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
MAY 11-20
1949 - 1979
TOTAL = 2
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
MAY 21-31
1949 - 1979
TOTAL = 8

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
JUN 01-10
1949 - 1979
TOTAL = 16
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
JUN 11-20
1949 - 1979
TOTAL = 16

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
JUN 21-30
1949 - 1979
TOTAL = 16
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
JUL 21-31
1949 - 1979
TOTAL = 25

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
AUG 01-10
1949 - 1979
TOTAL = 18
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD AUG 11-20
1949 - 1979
TOTAL = 25

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD AUG 21-31
1949 - 1979
TOTAL = 35
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD

SEP 21-30
1949 - 1979
TOTAL = 25

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
OCT 01-10
1949 - 1979
TOTAL = 18
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
OCT 11-20
1949 - 1979
TOTAL = 13

EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
OCT 21-31
1949 - 1979
TOTAL = 10
EASTERN PACIFIC TROPICAL STORMS ORIGINATING IN THE PERIOD
NOV 21-30
1949 - 1979
TOTAL = 2

Graph showing the distribution of tropical storms in the Eastern Pacific from November 21-30, 1949-1979.

Application of the National Weather Service Flash-Flood Program in the Western Region. Gerald Williams, January 1976. (PB-253-053/AS)

Objective Aids for Forecasting Minimum Temperatures at Reno, Nevada, During the Summer Months. Christopher D. Hill, January 1976. (PB-252-866/AS)

Forecasting the Mono Wind. Charles P. Ruscha, Jr., February 1976. (PB-254-660)

Map Types as Aids in Using MOS Pops in Western United States. Ira S. Brenner, August 1976. (PB-259-594)

Other Kinds of Wind Shear. Christopher D. Hill, August 1976. (PB-260-437/AS)

A Study of Wind Gusts on Lake Mead. Bradley Colman, April 1977. (PB-268-847)

The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of K-value. R.F. Quiring, April 1977. (PB-272-831)

Moisture Distribution Modification by Upward Vertical Motion. Ira S. Brenner, April 1977. (PB-268-740)

The Relative Frequency of Occurrence of Harm Season Echo Activity as a Function of Stability Indices Computed from the Yucca Flat, Nevada, Rawinsonde. Darryl Randerson, June 1977. (PB-271-290/AS)

Flash-Flood Procedure. Ralph C. Hatch and Gerald Williams, May 1978. (PB-286-014/AS)

Application of a Spectrum Analyzer in Forecasting Ocean Swell in Southern California Coastal Waters. Lawrence P. Kierulf, January 1979. (PB292716/AS)

The Usefulness of Data from Mountaintop Fire Lookout Stations in Determining Atmospheric Stability. Jonathan W. Corey, April 1979. (PB298089/AS)

The Depth of the Marine Layer at San Diego as Related to Subsequent Cool Season Precipitation Episodes in Arizona. Ira S. Brenner, May 1979. (PB298817/AS)

Arizona Cool Season Climatological Surface Wind and Pressure Gradient Study. Ira S. Brenner, May 1979. (PB298900/AS)

On the Use of Solar Radiation and Temperature Models to Estimate the Snap Bean Maturity Date in the Willamette Valley. Earl M. Gates, August 1979. (PB301609/AS)

The BART Experiment. Morris S. Webb, October 1979. (PB300155112)

Occurrence and Distribution of Flash Floods in the Western Region. Thomas L. Dietrich, December 1979. (PB300160344)

A Real-Time Radar Interface for AFOS. Mark Mathewson, January 1980. (PB300176005)

Misinterpretations of Precipitation Probability Forecasts. Allan H. Murphy, Sarah Lichtenstein, Baruch Fischhoff, and Robert L. Winkler, February 1980. (PB80174576)

Climate of Salt Lake City, Utah. Wilbur E. Figgins, June 1980. (PB80225493)

Regression Equation for the Peak Wind Gust 6 to 12 Hours in Advance at Great Falls During Strong Downslope Wind Storms. Michael J. Oard, July 1980. (PB81108367)

The Effects of Terrain Distribution on Summer Thunderstorm Activity at Reno, Nevada. Christopher Dean H11, July 1980. (PB81102501)

Hydrology Practicum. Thomas Dietrich, September 1980. (PB81134033)

Tropical Cyclone Effects on California. Arnold Court, October 1980. (PB81133779)
The National Oceanic and Atmospheric Administration was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact of natural and technological changes in the environment and to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth.

The major components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS — Important definitive research results, major techniques, and special investigations.

CONTRACT AND GRANT REPORTS — Reports prepared by contractors or grantees under NOAA sponsorship.

ATLAS — Presentation of analyzed data generally in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals, ionospheric conditions, etc.

TECHNICAL SERVICE PUBLICATIONS — Reports containing data, observations, instructions, etc. A partial listing includes data serials; prediction and outlook periodicals; technical manuals, training papers, planning reports, and information serials; and miscellaneous technical publications.

TECHNICAL REPORTS — Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS — Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.

Information on availability of NOAA publications can be obtained from:

**ENVIRONMENTAL SCIENCE INFORMATION CENTER (D822)
ENVIRONMENTAL DATA AND INFORMATION SERVICE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
U.S. DEPARTMENT OF COMMERCE**

6009 Executive Boulevard
Rockville, MD 20852