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A SYSTEMS APPROACH TO REAL-TIME RUNOFF ANALYSIS WITH A 
DETERMINISTIC RAINFALL-RUNOFF MODEL 

Robert J. C. Burnash and R. Larry Ferral 
California-Nevada River Forecast Center· 

Sacramento, California 

ABSTRACT. The responsibility for providing the United 
States with warnings of river conditions was assigned to 
the National Weather Service in 1890. This requirement 
has led to the development of a systems approach to 
hydrologic data collection, runoff computation, and fore­
cast production which is being developed and applied in the 
service area of the California-Nevada River Forecast Center. 
This system is focused on producing information on the 
future distribution of water in time and space which affects 
the safety, welfare, and economic well being of the nation 
and its inhabitants. 

A principal element of any hydrologic warning system is an 
effective rainfall-runoff model. The authors have con­
structed such a model, which is now being generally applied 
by the National Weather Service. It has been our goal to 
construct a physically realistic and,understandable model 
which, although necessarily parametric, would describe the 
runoff generation process in a manner which was consistent 
with the physics of plant, atmosphere, and soil-water inter­
action. As a basic part of this effort, it was considered 
necessary to model the percolation process in a manner which 
retained the desirable infiltration characteristics described 
by Horton and others and to recognize and improve upon the 
limitations which such systems possessed. 

The formul.ation of such a system did not, however, solve 
the rainfall-runoff analysis problem. As the runoff equa­
tions were developed to a high level of effectiveness, they 
led to an ever-increasing appreciation of the deficiencies 
in available rainfall data. The magnitude of the rainfall 
data problem, coupled with the authors' responsibilities for 
real-time river forecasting, led to an additional effort to 
improve the effectiveness, timeliness, and stability of 
precipitation measurement in order to provide better data 
input to the runoff analysis process. 

These efforts have recently led to the completion of highly 
cost-effective computerized techniques for real-time data 
collection and analysis. The basic measuring device utilized 
for such data collection is a self-reporting gage which sends 
each increment of data via an event-activated radio system. 

Data storage, analysis,and the forecasting of hydrologic 
responses may be accomplished instantaneously with such a 

·system. More commonly, however, a hydrometeorologist main­
taining close surveillance by interacting with a powerful 
mini6omputer, can incorporate site-specific weather forecasts 



into a local hydrologic analysis. This makes it possible 
for the first time to provide site-specific, quantitative, 
and reliable rainfall-runoff analysis,.i.e., flood forecasts 
suitable for effective warning, evacuation, or flood fight­
ing in even the smallest basins. 

Thus, a systems approach to real-time runoff modeling includes 
not only an effective deterministic rainfall runoff technique 
which allows rational analysis of the physical processes--
it must also include effectively automated, dimensionally 
stable inputs, reliable communications, and refined short­
term hydrometeorologic forecasts. The development of such 
an approach provides important feedback mechanisms which 
provide conjunctive improvements in both the real-time 
meteorological and hydrological analyses. 

I. INTRODUCTION 

In 1890 the United States Congress established a new agency, now known as 
the National Weather Service, to provide public weather and hydrologic warnings. 
Recognizing the significant interdependence of hydrologic and meteorologic 
warnings, the National Weather Service has attempted to meet its assigned 
responsibility throuh the design, testing, and application of equipment and 
procedures which contributed to the conjunctive success of this dual mission. 

At the present time, thirteen National Weather Service River Forecast Centers 
carry the primary responsibility for those hydrologic warnings which can be 
quantitatively produced. For those locations where discrete warning techniques 
have not yet been developed, general warnings are provided by the nation's many 
Weather Service offices. Such warnings, based upon an interpretation of hydro­
logic and meteorologic data, lack the specificity which can be obtained from 
discrete analysis. They do, however, provide important information to locations 
where more discrete technology is inappropriate or is not yet available. 

The process of producing discrete hydrologic warnings affecting the safety, 
welfare, and economic well being of the nation and its inhabitants is now b,eing 
advanced through the application of a highly cost-effective technology. Although 
this automated technology has been applied only over a limited portion of the 
United States, the potential benefits which can be gained from it are enormous. 
The analysis of flood threats and the evaluation of potential river flows and 
surface water availability all stem from the same data collection and analysis 
techniques. As a consequence, simi 1 ar systems are being p·l an ned for many areas 
in the United States. The completion of these systems is expected to contribute 
well over a billion dollars a year in economic benefits to the nation through 
reduced flood damages and increased effectiveness of water management decisions. 

The systems which hold such substantial promise have already produced bene­
fits well in excess of development and operational costs in the limited areas 
where they have been applied. These benefits will become available to a growing 
portion of the United States as the resources become available to allow imple­
mentation of a systems approach. At the present time, areas of the western 
United States are enjoying the first fruits of these system concepts (Bartfeld 
and Taylor, 1980). 
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II. RAINFALL-RUNOFF MODELING 

A key element in the technology of automated hydrologic warnings has been the 
development and application of an effective rainfall-runoff methodology. After 
extensive testing nationally and internationally (World Meteorological Organiza­
tion 1975), the National Weather Service selected the Sacramento Rainfall Runoff 
Model (Burnash, Ferral, and McGuire, 1973) for this purpose. The Sacramento 
model is a deterministic generalized hydrologic model which is based upon a 
parametric conceptualization of percolation, soil moisture storage, drainage and 
evapotranspiration characteristics. Each variable required in the model is 
intended to represent a discrete and recognizable characteristic required for 
effective real-time hydrologic analysis. 

The definition of model parameters is achieved by establishing a soil mois­
ture computation which allows the determination of basin streamflow from basin 
precipitation. Effective moisture storage capacities in the soil profile are 
estimated not by sampling of the soil profile, but by inference from the rain­
fall and discharge records. The five basic soil moisture components of the 
model are upper zone and lower zone tension water storages, which are filled 
preferentially by infiltrated. water, and three free water storages. Upper 
zone free water storage supplies water for percolation to lower zones and for 
interflow. The two lower zone free water storages fill simultaneously from 
percolated water and drain independently at different rates, giving a variable 
groundwater recession. These storages are diagrammed in Figure 1. 

Rainfall occurring over the basin is considered as falling on two basic 
areas: 1) a permeable portion of the soil mantle, and 2) a portion of the 
soil mantle covered by streams, lake surfaces, marshes, or other impervious 
material directly linked to the streamflow network. The first area produces 
runoff when rainfall rates exceed percolation rates, while the second area 
produces direct runoff. In the permeable portion of the basin, the model 
visualizes an initial soil moisture storage identified as Upper Zone Tension 
which must be totally filled before moisture becomes available for other 
purposes. This represents that volume of precipitation which would be required 
under dry conditions to meet all interception requirements and to provide suffi~ 
cient moisture to the upper soil mantle so that percolation to deeper zones and 
sometimes horizontal drainage could begin. When the Upper Zone Tension volume 
has been satisfied, excess moisture above the Upper Zone Tension water capacity 
is temporarily accumulated in Upper Zone Free Water. Upper Zone Free Water is 
that volume of moisture in the upper level soil from which lateral drainage, 
appearing as streamflow, is observable. This form of lateral drainage is 
identified as interflow. Upper Zone Free Water not only has the horizontal 
potential to generate interflow, but more significantly has a vertical potential. 
The rate of vertical drainage is controlled by the contents of the Upper Zone 
Free Water and the deficiency of lower zone moisture volumes. The preferred 
path for moisture in Upper Zone Free Water is considered to be vertical. Only 
when the rate of infiltrated precipitation exceeds the rate at which vertical 
motion can take place from the upper zone, does horizontal flow in the form of 
interflow occur. If the precipitation rate exceeds the percolation rate and the 
maximum interflow drainage capacity, then surface runoff occurs. Under this 
system, surface runoff is a highly rate-dependent .volume with the rate of runoff 
being determined by the rate of precipitation application and the degree of dry­
ness of the different zones. 

The percolation mecahnics have been designed to correspond with observed 
characteristics of the motion of moisture ~hrough the soil mantle and is intended 
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to parallel the formation and transmission characteristics of the wetting front 
in the soil mantle. Water in excess of Upper Zone Tension requirements can 
percolate to a deeper portion of the soil mantle through transfer by Upper Zone 
Free Water. The mechanics of transfer from upper zone to lower zone volumes is 
based upon the computation of a lower zone percolation demand. When the lower 
zone is totally saturated, the percolation into the lower zone must be limited 
to that water which is draining out of the lower zone. This limiting drainage 
rate is computed as the sum of the products of each of the two lower zone free 
water storages and its drainage rate. If this limiting rate of drainage is 
defined as PBASE, then there exists under the driest circumstances a lower zone 
potential for accepting percolation which is larger than PBASE by a quantity 
which may be defined as Z•PBASE. Thus, the percolation under all circumstances 
can be estimated by evaluating the change from PBASE*(l+Z), the driest percola­
tion condition, to PBASE, the saturated percolation condition. An exponential 
relationship defined by the exponent, REXP, provides a curvilinear percolation 
form capable of reproducing widely varying percolation characteristics reported 
in the literature. The resulting equations which reproduce these characteristics 
are: 

Percolation Demand = 

PBASE* (l+Z (L:(Lower zone ca acities le~s _contents) \REXP) 
· L: Lower zone capac1 t 1 es j 

Percolation = Percolation Demand* (Upper zone free water content ) 
Upper zone free water capacity 

The sums of lower zone capacities and contents include both tension water and 
free water. Thus, percolation is defined by an interrelationship between soil 
drainage characteristics and soil moisture conditions. The volume which is per­
colated to the lower zone is divided among three significant soil moisture 
storages. The first of these, lower zone tension, represents that volume of 
moisture in the lower zone soil which will be claimed by dry soil particles when 
moisture from a wetting front reaches that depth. The tension water capacities 
defined in this model are capacities for change. In the lower level this is the 
difference between that water held against gravity after wetting and that remain­
ing after plant roots have extracted all that they are capable of withdrawing. 
In the upper zone some additional water is lost and the tension water capacity 
is enlarged by direct evaporation from the soil. Tension water deficiencies 
would absorb all percolated water until these deficiencies are satisfied. How­
ever, variations in soil conditions and rainfall amounts over a drainage basin 
cause variations from this condition. The effect of these variations is approxi­
mated by diverting a fraction of the percolated water into lower zone free water 
storages before tension water deficiencies are fully satisfied. The free water 
storages in the lower zone represent those storages which generate horizontal 
flow generally observable as increase in base flow at the gaging point. As the 
tension water storage is completely filled, all percolation is diverted to free 
water storages. At all times the distribution of percolated water between free 
water storages is a function of their relative ratios of contents to capacity. 

If the natural boundary conditions of the basin should allow all applied 
moisture to leave the basin either at the gaging point or through evapotrans­
piration, these soil moisture divisions would be adequate. However, subsurface 
drainage bypasses the gaging site in many basins. In order to approximate this 
effect within a particular basin, it is assumed that those soils in areas drain­
ing in a direction or to a depth away from the stream channel have the same basic 
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drainage characteristics as those soils which drain to the stream channel. 
Thus, the volume of such subsurface flows can be expressed as a fraction ,of the 
volumes integrated from the surface outflow hydrographs. This volume exists 
within the basin in addition to the volumes which will be observed through the 
surface outflow hydrograph. 

Streamflow is, thus, the result of processing precipitation through an algo­
rithm representing the uppermost soil mantle and lower soils. This algorithm 
produces runoff in five basic forms: 1) direct runoff from permanent and tempo­
rary impervious areas, 2) surface runoff due to precipitation occurring at a 
rate faster than percolation and interflow can take place when both upper zone 
storages are full, 3) interflow resulting from the lateral drainage of a tem­
porary free water storage, 4) supplementary base flow, and 5) primary base flow. 
Runoff forms one and two have similar drainage characteristics while the drainage 
of each of the remaining components corresponds to observed streamflow features 
with uniquely different characteristics. 

It should be noted that the proportion of impervious runoff, i.e., direct 
runoff~ does not remain a constant with this model. It has been observed in 
many basins that upon filling the tension water storages, an increasing area 
assumes impervious characteristics. This, the additional impervious area, 
provides a useful representation of the filling of small reservoirs, marshes, 
and temporary seepage outflow areas which achieve impervious characteristics 
as the soil mantle becomes wetter. 

An examination of Figure 1 indicates that water percolating from the upper 
zone free water to the lower zone may go totally to tension water or some frac­
tion of the percolated water may be made available to the primary and supple­
ment.ary storages. At any time that the lower zone tension storage becomes 
filled, continued percolation is divided between the two lower zone free water 
storages. At all times water made available to primary and supplementary 
storages is distributed between them in response to their relative deficiencies. 

Evaporation from water and phreatophyte surfaces is computed at the potential 
rate. Over other portions of the soil mantle, evapotranspiration is treated as 
the only process which depletes tension storage. As the soil mantle dries from 
evapotranspiration, moisture is withdrawn from the upper zone at the potential 
rate multiplied by the proportional loading of the upper zone tension water 
storage. In the lower zone evapotranspiration takes place at a rate determined 
by the unmet potential evapotranspiration times the ratio of the lower zone 
tension water content to total tension water capactty. If evapotranspiration 
should occur at such a rate that the ratio of contents to capacity for available 
free water exceeds the ratio of contents to capacity of tension water, then water 
is transferred from free water to tension water and the relative loadings 
balanced in order to maintain a moisture profile that is logically consistent. 
Depending upon basin conditions, some fraction of the lower zone free water is 
considered to be below the root zone and, therefore, available for such tranfers. 
Various algorithms have been utilized to compute evapotranspiration demand. 
Hounam (1971) has documented many of the procedures intended for such purposes 
and indicated many of the problems associated with them. The authors are 
presently utilizing either daily mean values of evapotranspiration varying 
with day of the year and defined by model optimization techniques or redimen­
sioned computations of daily evaporation based upon the work of Kohler, Nordenson, 
and Fox (1955). If computed values are used, they are adjusted by a coefficient 
that varies with day of the year. 
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Although the system mechanics of the generalized hydrologic model are simpli­
field approximations of natural processes, the total effect is consistent with 
observations of the soil moisture profile made by experimental studies such as 
those by Green et al (1970) and Hanks, Klute, and Brestler (1969). 

III. INFILTRATION COMPARISONS 

Horton (1939) suggested an infiltration equation which has become quite 
famous as a technique for computing infiltration. The equation: 

f = fc + (fo - fc)e-kt 

is actually a simple decay curve where 

f ~ infiltration rate at time t 

fc = a minimum infiltration rate 

f0 = the infiltration rate of t = ~ 

e = the Napierian base 

k = a decay constant 

t = time 

A plot of the log of the derived infiltration versus time is.a straight line 
with a negative slope. Computation of continuous infiltration capacity requires 
that rainfall be in excess of infiltration throughout the time period. As 
written, the equation is not applicable for intermittent rainfall, with alter­
nate wetting and drying periods, or for rainfall that does not continuously 
exceed f. Infiltration capacity almost always exceeds rainfall rates early in 
a storm, resulting in actual infiltration rates equal to rainfall rates, as 
described and explained by Mein and Larson (1973). Holtan (1961) and Bauer 
{1974) proposed modifications and elaborations of Horton 1.s equation for appli­
cation to intermittent rainfall. They approached this by making infiltration 
a function of moisture in the soil, not time as. such. 

The Sacramento model, though not designed as an infiltration model, provides 
an indication of the vertical distribution of water in the soils. The modeled 
components of runoff, and by implication net infiltration as the difference 
between rainfall and runoff, are compared as functions of moisture contained in 
the soil. Though designed to be applied for real-time hydrologic analysis of 
runoff conditions with intermittent and variable natural rainfall, system 
mechanics can be applied to continuing rainfall in excess of infiltration to 
provide an interesting comparison with Horton's equation. Some similarities and 
differences can be seen: 

1) Observed infiltration curves show very high rates after a short 
time period, with initial rates at time zero undefined. Exam­
ples are seen in Rubin (1966), Mein and Larson (1973), Linsley, 
Kohler, and Paulhus (1975), and Green et al (1970). The 
Sacramento model similar to observed conditions provides for 
very rapid initial infiltration. This takes place as void 
spaces in the upper soil levels are being filled. Infiltration 

-7-



then drops to a much lower rate whtch diminishes slowly 
with time, as rainfall in excess of inftltration capa­
city continues. When rainfall stops, infiltration 
capacity increases very quickly as moisture in upper 
soil levels drains away, then more slowly as lower soils 
drain and moisture is removed by evapotranspiration. 
These features are all compatible with natural conditions 
and are necessarily included in the model in order to 
provide an effective real time rainfall runoff transfer 
function for intermittent as well as continuous rain 
conditions. 

2) Observed infiltration curves in Rubin (1966) p. 746, 
Green et al (1970) p. 869, Mein and Larson (1973) p. 390, 
and Linsley et al (1975) p. 263, when replotted in a log 
f vs t form, are concave upward. A typical plot is shown 
in Figure 2a. After the rapid initial infiltration rate, 
the Sacramento model's subsequent infiltration, with some 
parameter combinations, can give an infiltration-time 
curve very similar to Horton's, i.e., linear on a log f vs 
t plot (Figure 2c). More commonly, the Sacramento model 
gives a log f vs t curve that is concave upward, equiva­
lent to a Horton•s k that diminishes with time. A typical 
plot is shown in Figure 2b. Other parameter combinations, 
much less common, can give a concave log f vs t curve, 
equivalent to a Horton•s k that increases with time. 

Thus, it appears that the Sacramento model has substantially greater flexi­
bility in modeling the diverse observed infiltration curves than is possible 
with the classical Horton equation. In addition, it provides a reasonable 
estimate of initial wetting conditions which are not adequately described by 
Horton•s equation. 

IV. DATA COLLECTION 

This modeling process, in order to be effectively applied for purposes of 
hydrologic warnings, must necessarily be supported by an effective real-time 
data-collection system. Manual observations techniques rarely provide suffi­
ciently timely or dimensionally stable data for adequate effectiveness in 
hydrologic warnings. As a consequence, the application of the Sacramento 
model with data systems, which in the past were considered acceptable, has 
led to numerous problems. The model sensitivity, a requirement for more 
effective analysis, exposed the inadequacy of many existing database systems. 

Very few manual observation techniques can maintain a measurement accuracy 
of five percent over a prolonged period of time. The growth of vegetation, 
the construction of buildings, slight changes in equipment or exposure all 
contribute to a lack of consistency. 

If such inputs are used in a sensitive model, the impacts upon runoff pro­
jections can be quite large. As an example of the sensitivity problem, Figure 
3 illustrates the effect of the change in forecast runoff which is produced by 
a five percent change in the precipitation input. This problem has led to the 
development and application of fully automated data-collection systems which 
were more appropriate to the needs of an operational warning system. 
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That system of automated data which has demonstrated the most effective 
benefit-cost ratio is based upon installing totally self-contained sensors at 
those locations where data are required. · Such sensors contain their own power 
supply and communication equipment. Whenever there is a change in the sensor 
value, the units transmit a self-initiated radio message. Under conditions 
when the sensors are not producing changes, reports are sent at periodic 
intervals to verify system operation. To date, this technology has been 
applied to precipitation, snow pack, temperature, and water levels. A 
remarkable auxiliary benefit of automated data collection was a reduction in 
the true cost of collecting data (Burnash and Bartfeld, 1980). 

Of primary interest to most hydrologists are the precipitation gages. 
Three types of precipitation gages are utilized. They are: 1) a simple rain 
gage for relatively snow-free areas, 2) a modified design for areas where 
snow occurs but where the winter precipitation does not exce~d one hundred 
centimeters of water content, and 3) the deep snow gage which may be used in 
areas where the snow depth can reach as much as seven meters, see Figure 4. 
All sensors send brief radio signals, less than one-quarter second in duration, 
which place a very small load on the power supply. A single four-kilogram 
battery has adequate reserves to power a precipitation gage for over a year in 
the wettest areas of the world. Such gages have been installed utilizing 
basically line-of-sight radio transmission paths. Data are acquired by a 
minicomputer which monitors a radio receiver. Where direct radio transmission 
to a base station is not feasible, radio relays have been utilized. At some 
locations data are received and interpreted by local microcomputers. These 
microcomputers meet local requirements for data and site-specific hydrologic 
warnings. The microcomputers are programmed to allow telephone polling by the 
River Forecast Center. An example of various communi'cations paths is. shown in 
Figure 5. 

Inasmuch as the River Forecast Center computer can be set to interrogate 
local data collection minicomputers on the basis of satellite imagery or other 
meteorological data, the telephone polling can be kept at a cost-effective 
level. The frequency of interrogation is dependent upon the significance of 
the event. At the River Forecast Center, the data are analyzed by a powerful 
minicomputer which has in storage the hydrologic characteristics of all areas 
for which forecast service is provided. The River Forecast Center computer 
evaluates the precipitation input for the area and through the Sacramento 
model produces forecasts of runoff and streamflow. Upon completion of the 
discharge analysis, the computer evaluates significant stage conditions 
associated with the discharge forecast and prepares an English language state­
ment of river conditions. Based upon the significance of the analysis, the 
system then determines the appropriate routing of the warning message and the 
information is routed to the appropriate local office. 

At the present time, this developing technology is being applied to a limited 
but growing number of locations. Although the entire process of data collection, 
model application, forecast generation and distribution is not yet instantaneous, 
they can all be completed within minutes. This new dimension in timeliness is 
not restricted to an arbitrary data collection time, for data are constantly 
available and always current. Until ver,.y recently, the lack of timely data 
limited site-specific flood warnings to large, relatively slow-rising rivers. 
This limitation has been eliminated by the continuous collection of real-time 
data, the use of this data to improve short-term quantitative rainfall forecasts, 
and the automation of hydrologic data analysis and forecasting. It is now 
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possible to provide effective flood-warning systems where some of the greatest 
flood hazards exist--along small, fast-rising rivers, creeks, and arroyos. 

V. CONCLUSIONS 

The combination of the rainfall-runoff model with the other technologies we 
have discussed has resulted in an information and processing system that not 
only solves old problems in a more efficient manner, it adds a new dimension 
to the supporting capabi 1 i ty of the meteoro 1 ogi st. The data collected by these 
systems describe storm movements and intensity changes in a manner which allows 
a substantial improvement in the ability to evaluate precipitation which is 
likely to occur during the next few hours. The feedback of such determinations 
into the hydrologic analysi·s allows real-time warings to be generated for areas 
where the time from the slackening of heavy rain to crest conditions is in the 
scale of minutes. 

Thus, real-time automated systems based upon effective data collection, con­
tinuous meteorologic and hydrologic analyses, and automated forecast generation 
and distribution provide the potential for a remarkable improvement in flood­
warning programs. 
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