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PRELIMINARY LIGHTNING CLIMATOLOGY STUDIES FOR IDAHO 

ABSTRACT 

Two years of cloud-to-ground lightning strike data from the Bureau of Land 
Management•s Automatic Lightning Detection System are used to develop a 
preliminary thunderstorm climatology for the State of Idaho. The prelimi­
nary results suggest earlier climatologies based on widely separated 
weather observing stations underestimate the number of thunderstorm days 
in the region. Map types are then used to investigate the variations in 
the frequency of lightning under differing mid-tropospheric flow patterns. 
Finally, manually reported lightning activity levels are compared to 
lightning occurrence and density as measured by the automated system. 
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PRELIMINARY LIGHTNING CLIMATOLOGY STUDIES FOR IDAHO 

I. INTRODUCTION 

In 1983, the National Weather Service (NWS) Western Region began 
utilizing cloud-to-ground lightning strike information from the 
Bureau of Land Management•s (BU1) detection network. Since the 
original description by Rasch and Mathewson (1984), significant 
changes have been made to both the NWS and BLM programs. Most 
notably, the BLM has increased the number of sensors, added the 
capability to differentiate between positive and negative strikes, 
and extended the program to year-round operation. The NHS now 
pro cess es and archives the 1 i ghtni ng data at the NWS Forecast 
Office in Boise, Idaho, since the facility is co-located with the 
BLM computers. The programs of these two agencies came to maturity 
in 1985. As a result, the data sets for 1985 and 1986 are almost 
100 percent complete. These two years of data were used to develop 
a preliminary thunderstorm climatology for the Idaho area, i nves­
tigate lightning occurrence under various mid-tropospheric flow 
patterns, and compare BLM and U.S. Forest Service (USFS) manually 
reported lightning activity levels (LAL•s) with actual lightning 
occurrence. 

II. PRELIMINARY THUNDERSTORM CLIMATOLOGY 

Until now, thunderstorm climatologies have been based on the only 
available source, surface weather observations. Unfortunately, the 
western United States in general and Idaho in particular have few 
surface weather observing sites. In addition, the region is largely 
mountainous, and the few observation sites that do exist are in 
valleys. This h'as led to what appears to be a significant under­
estimation of the frequency of thunderstorm activity. 

An early example of thunderstorm climatology is shown in Figure 1 
from Climate and Man (1941) .. Based on 40 years of data the climatology 
depicts the average annual number of thunderstorm days varying from 
somewhat less than 20 days in western Idaho to a little more than 
40 days per year in eastern Idaho. Figure 2, from Critchfield 
(1966), portrays a significantly different climatology, with the 
area in eastern Idaho which was a maximum in Figure 1, now depicted 
as a relative minimum. A maximum is analyzed over southwest Montana. 
Figure 3 from Changery (1981) is an attempt to utilize all available 
data and subjectively incorporate major terrain influences. This 
climatology depicts a relative minimum through the Snake River 
Valley of southern Idaho with maxima near the central Idaho­
southwest Montana border and just east of Idaho in western Wyoming. 
A secondary maximum is also shown over the mountains along the 
Idaho-Utah border. 
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Since 1983, lightning strike data has been available from the BLM 
detection network and is transmitted to NWS computers at Boise in 
real time. Each strike is stored with its time of occurrence, 
latitude, longitude, signal strength and sign (positive or negative), 
number of return strokes, and which direction finders were used to 
locate the strike. This is done for the entire western United 
States. In 1985 a total of 1,913,602 strikes were recorded by the 
network. In 1986, 2,323,897 strikes were logged. For this study, 
the data was filtered into the grid block network illustrated in 
Figure 4. Each grid block is .5 degree latitude by .5 degree 
longitude and thus very close to the size used by Reap (1986) in 
the study of 1983-84 data. The grid is oriented differently than 
Reap• s however. Our grid size was chosen for computer resource 
reasons and also to minimize the possibility of over-fitting the 
data based on current estimates of errors in specifying the location 
of a strike. 

Since the BLM network was only operational for the months of April 
through October during 1985, those seven months of data were used 
for both 1985 and 1986 in constructing the preliminary climatolo­
gies. It appears that thunderstorms are quite rare in Idaho during 
the winter months of November to March. The authors do reserve the 
right to reverse their position on this after a few years of data 
have been assembled. In any event, current exclusion of these 
months may cause a slight underestimation of the "annual'' frequen­
cies found. 

Figure 5 depicts the average annual number of lightning days based 
on the 1985 and 1986 BLM data. Stippling on the figure denotes general­
ized "mountainous" terrain. General valley areas are the Snake 
River Valley of southern Idaho and the Idaho Panhandle region. It 
should be noted that the Snake River Valley actually slopes from 
600 meters near the western Idaho border to 1500 meters at its 
northeastern extension. Figure 5 indicates a general increase in 
the frequency of lightning days from west to east across the state. 
This trend appears to be definitely distorted by topography. Note 
that a relative minimum pushes eastward across the Snake River 
Valley while a relative maximum extends westward along the mountains 
near the state's southern border. 

Comparison of Figure 5 with Figures l through 3 indicate two striking 
differences. First, this preliminary climatology suggests a signifi­
cantly greater frequency than previously thought. Second, the 
maximum presented by Changery in Figure 3 appears to actually be 
further southeast and centered over the Yellowstone National Park 
area. The absolute maximum appears to occur over the mountains 
just east of the northern extension of the Snake River Valley. 
Interesting secondary maxima also appear to exist over the southwest 
Idaho mountains and the Wallowa Mountains in the northeast corner 
of Oregon. 
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As indicated by the values given for the total number of strikes 
recorded by the BLM network for the two years used, 1986 appears to 
have been a much more active thunderstorm year. This was true for 
our grid as well. In 1985 a total of 196,474 strikes fell within 
the grid. During 1986 the total was 262,809. Figure 6 depicts the 
number of lightning days for just 1985. Figure 7 is for 1986 
alone. Comparison of these two figures indicates a difference in 
the number of days each year. However, the regions of relative 
maxima and minima coincide almost exactly. This lends strong 
credence to the hypothesis of terrain-induced convection. However, 
terrain height does not appear to be the dominant factor. 

Figure 8 depicts the average number of hours with lightning strikes 
per year. Again the pattern coincides quite well with the pattern 
of lightning days across the state. When one looks at the average 
number of actual lightning strikes per year as shown in Figure 9, a 
significantly different pattern emerges. The region around Yellowstone 
which stood out as a center of maximum lightning days and hours now 
appears as a relative minimum. When considering total lightning 
strikes, the absolute maximum shifts to near the southeast corner 
of Idaho. Caution must be exercised in drawing conclusions from 
this, however, as operational experience has shown that occasionally 
a thunderstorm can become extremely active with regard to the 
amount of cloud-to-ground lightning it produces. The analysis does 
suggest that these highly active thunderstorms may be quite rare 
over some locations and show a preference for other areas. 

III. FREQUENCY OF LIGHTNING UNDER VARIOUS SYNOPTIC FLOW PATTERNS 

Figure 10 portrays the two year average percent of days with 1 ightning 
for the summer season of June, July and August. As can be seen, 
the summer season climatological probability of a day with lightning 
varies from less than 20 percent over much of western Idaho to 50 
percent in the Upper Snake River Plain, the Yellowstone area and 
over the Teton Range. 

To test whether the frequency of lightning days varies signifi­
cantly under different synoptic scale flow patterns, the two year 
summer season data were stratified based on the 500 mb map types 
developed by Rasch and MacDonald (1975). The 1200 GMT 500 mb 
geopotential height analysis for each of the 184 sample days was 
assigned to the summer map type that it correlated with best. 
Figures ll through 20 depict each of the 10 map types along with 
the corresponding frequency of occurrence of lightning during the 
period 1800 GMT to 0600 GMT (noon to midnight) on those days. Thus 
each figure gives the probability of lightning for each grid block 
under the accompanying synoptic scale mid-tropospheric flow pattern. 

Figure 11 gives the Summer Type 1 flow pattern and corresponding 
probability of lightning. As with the data used to develop the map 
types, type l cases made up the largest percentage of the two year 
sample used in this study. Type 1 is a weak zona 1 pattern that 
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occurs over the western United States frequently during the summer 
months. Thus, as expected, the Type 1 frequencies are very similar 
to the seasonal mean frequencies shown in Figure 10. The probabilities 
over the southern portion of the state are slightly higher and 
those over the north a little lower than the mean. 

Summer Type 2 probabilities presented in Figure 12 indicate a 
marked deviation from the means of Figure 10. Type 2 cases are 
characterized by the axis of the strongest upper tropospheric winds 
over or just south of southern Idaho. Thus dynamics associ a ted 
with the jet stream may account for the much higher than normal 
probabilities over southern Idaho. The cold core areas of low 
pressure a 1oft associ a ted with Type 2 cases often tracks across 
northern Idaho. This may explain the increased probabilities over 
the Panhandle. · 

Map Type 3, with an upper ridge axis over or just east of Idaho, was 
the second most prevalent pattern in both the data set used to,, 
develop the map types, and for 1985, 1986. The corresponding 
probability of lightning chart in Figure 13 is even closer to the 
seasonal climatological probability than Type l. Main differences 
are more of a minimum in the Snake River Valley and a stronger 
maximum over the Wallowa Mountains of northeast Oregon. 

Map Type 4 shown in Figure 14 is characterized by a s.trong upper 
ridge near 100 degrees west longitude and a fairly deep trough on 
or just off the West Coast. The jet stream axis is usually, but 
not always, north and west of Idaho. In some cases· the upper flow 
over Idaho, especially the southern portion, is very weak. This 
pattern can be quite moist. The corresponding probability chart 
reflects this with a relatively high occurrence of lightning over 
the Snake River Valley. 

Figure 15 shows Type 5 which is characterized by a split flow or a 
shearing trough over the state. The associated lightning probabil­
ity chart suggests the troughs in the northern branch of the split 
are generally dry until they interact with the usually more moist 
weak southerly flow over southeast Idaho and western Wyoming. 

Map Type 6, shown in Figure 16, is also characterized by a split 
flow. In this case the flow over Idaho is northwesterly. As 
expected, the corresponding 1 i ghtni ng activity is quite 1 ow over 
most of Idaho under this pattern. In the 1 ight flow aloft over 
Montana, lightning episodes are more frequent. 

The dominant feature for Type 7 days is a short wave ridge moving 
over Idaho in the wake of a trough. As shown in Figure 17, thunder­
storm activity is well below the climatological frequency over the 
entire region for this type of flow pattern. 
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Probabilities are also quite low for Type 8 as shown on Figure 18. 
The glaring exception is the intriguing high frequency area over 
Yellowstone Park. The anomaly suggests that the terrain of that 
area may somehow react very favorably with short waves moving south 
in the northerly flow. There were only 17 Type 8 cases so it is not 
possible to say whether or not the anomaly is a stable one. 

Map Type 9 in Figure 19 is an even rarer occurrence, comprising 
about one-half of one percent of all the cases used to construct 
the map types and about two percent of the 1985-1986 cases. The 
accompanying probability chart is only included for completeness. 
No real conclusions can be drawn from such a small sample size. 
However, as expected, the pattern does appear to produce considerable 
thunderstorm activity over Idaho. 

Map Type 10 as depicted in Figure 20 is dominated by a broad ridge 
of high pressure over the western United States. The winds over 
Idaho are extremely light. Thus this map type may be an excellent 
starting point in investigating how mountainous terrain modifies 
the distribution of so-called 11 air-mass 11 thunderstorms. The associated 
lightning probability chart suggests that a few additional years of 
data may in fact provide some concrete insight into this problem. 
Note the numerous maxima and minima in Figure 20. These appear to 
generally correspond with significant terrain features. Equally 
important, if one compares Figure 20 with the more dynamic types 2 
and 4, these 11 air-mass 11 centers generally tend to correspond to 
11 dynamic 11 centers of the opposite sign. 

IV. MANUALLY OBSERVED LIGHTNING ACTIVITY LEVEL 

The National Fire Danger Rating System (NFDRS) implemented in 1972 
is a computer model used by a 11 federa 1 and many state 1 and management 
agencies to calculate current and forecast fire potential. In the 
western United States, 1 ightning is the greatest single cause of 
forest fires. A critical element used to determine fire danger in 
the NFDRS is a lightning risk factor. 

Prior to the introduction of the NFDRS, lightning forecasts were in 
probability terms. This approach made verification difficult. 
Studies of lightning and fire starts during Project Skyfire (1969) 
and later studies by Fuquay (1980) lead to the lightning activity 
level (LAL) index used by the NFDRS. 

The LAL is a numerical rating which ranges from l to 6. It is 
keyed to the frequency and characteristics of the cloud-to-ground 
lightning observed or forecast for a specified area and time period. 
The scale is exponential in powers of 2. Beginning with LAL 2, 
each succeeding level through LAL 5 represents twice the cloud-to­
ground lightning activity as the previous level. LAL 6 is a special 
and rare case in which high level dry thunderstorms create severe 
fire problems. LAL 1 indicates no lightning during the specified 
rating period. 
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Several schemes have been devised to help the fire weather observer 
and fire weather forecaster determine the appropriate LAL category. 
The Lightning Activity Guide (Deeming 1978) is the standard by 
which the LAL is presently calculated. The Guide has .been divided 
into two sections. The first uses cloud descriptions and precipitation 
conditions to estimate the LAL category. The second uses lightning 
rates and amount estimates to arrive at a representative LAL category. 
The basic unit of area represented by a LAL is 2,500 square miles. 
This is accepted as the largest area that lightning activity can be 
effectively observed from a surface observation point such as a 
fire lookout. It roughly corresponds to a circle around the observation 
site with radius of about 45 km. 

The observer subjectively assigns a LAL value. The ALDS network 
now pro vi des the opportunity to compare these subjective reports 
with actual lightning occurrence. For this comparison 18 observa­
tion points in the Boise Fire Weather District were chosen. These 
18 locations correspond to the established verification stations in 
each fire weather forecast zone as shown in Figure 21. Two summers 
(1985, 1986) of data were available for these comparisons. 

Figure 22 shows the relative frequency distribution of LAL 2 through 
LAL 6 upon which the NFDRS is based. Also shown is the frequency 
distribution of the manually reported LAL for the 18 sites during 
the two year study period. As Figure 22 indicates, the manual 
LAL's were highly weighted toward the lower LAL categories. The 
frequency dropped off rapidly in the higher categories. This 
distribution is far from the frequency distribution the NFDRS 
expects, i.e., emphasis on the middle categories. 

For each day, an ALDS LAL was assigned to each observation site. 
This was done by computing the tota 1 number of cloud-to-ground 
lightning strikes which fell within a 45 km radius of the observa­
tion site and then using the lightning density limits established 
for each LAL category by the NFDRS. For example, if 40 1 i ghtni ng 
strikes were recorded within 45 km of a station, a 11 true 11 LAL of 3 
was assigned since the NFDRS range for LAL 3 is 11 to 50 strikes in 
a 24-hour period. Table 1 shows the percentage of correct manual 
observations as verified by the ALDS data. As shown, the frequency 
of correct categories during thunderstorm days is generally 50 
percent or less. The only category which shows a high degree of 
skill is LAL 5. This is probably due to the fact that this category 
has the widest limits. Also, the station (Malad) which contained 
the bulk of LAL 5 cases was near the 1 i ghtni ng maximum for the 
region as indicated in Figure 9. The LAL 1 category s haul d be 
considered independently since it represents days with no thunderstorms. 
Table 1 indicates that observers totally missed 28 percent of the 
lightning occurrences the past two summers. The table also shows 
that only reported LAL categories 1 and 5 were genera 11 y representative 
of the actual lightning density that occurred. 
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A look at the means, standard deviations, and ranges of true lightning 
densities (ALDS data) corresponding to the manually reported LAL's 
is shown in Table 2. The means for each category are significantly 
higher than the established NFDRS limits (Table 3). Note also that 
the standard deviations and ranges are quite large and many overlap. 
Table 2 does indicate that a few observing sites were able to show 
skill in assigning LAL's which were representative of actual lightning 
density in a relative sense. Note, for example, the data for 
Stanley shows a general doubling of the lightning density mean 
value between LAL categories. The same is true for Mammoth and to 
some degree, Island Park. 

Since the data from most observing sites showed very 1 ittle correlation 
or apparent trends between the ALDS observed 1 ightni ng densities 
and the manual reported densities (through the reported LAL), we 
investigated the possibility of adjusting the current NFDRS limits 
to improve the manually reported LAL verification. 

The new limits shown in Table 3 we obtained by forcing the ALDS 
determined lightning densities for all 18 sites and all days into 
the NFDRS expected frequency distribution. As shown in Table 3 the 
data produced new 1 imits which had lower bounds for all but categories 
2 and 5. Also the ranges for categories 3 and 6 were greatly 
reduced while the limits for category 4 were significantly widened. 
When the manually reported LAL's were compared to the proposed new 
limits, the only category that experienced improvement was LAL 
category 4 as shown in Figure 23. 

The frequency distribution of reported LAL's which the NFDRS expects 
to receive could be changed. This in turn might 1 ead to better 
manually observed LAL verification scores by again utilizing the 
ALDS data to adjust the LAL category 1 ightning density ranges. 
This "tampering" does not appear advisable, however, since it 
appears the problem lies not with the system, but with the manually 
reported LAL program. 

V. DISCUSSION 

The actual percentage of cloud-to-ground lightning strikes detected 
by the BLM network is still a matter of controversy. The most 
accepted figures vary from 50 to 75 percent. In addition, not all 
thunderstorms produce cloud-to-ground strikes as they pass over an 
area. Thus, one would expect a lightning days climatology, as presented 
here, to be a conservative estimate of thunderstorm days. However, 
the preliminary climatology suggests that previous climatologies 
significantly underestimate the frequency of days with thunderstorms 
over much of Idaho. It must be kept in mind, however, that the 
preliminary climatology presented is based on only two years of 
data. In addition, the grid block size used yields an effective 
"observer radius" of about 27 km which is somewhat larger than the 
radius of most human observations which are the basis for conventional 
thunderstorm climatologies. 
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The use of map types as a means of stratifying summer days and 
de vel oping departures from the cl imatol ogi ca 1 frequencies appears 
promising. This approach could prove very useful in forecasting 
since the output from numerical models which verifies the best is 
mid-tropospheric synoptic scale geopotential height patterns. 
There are insufficient cases for a number of the map types to 
consider the current associated probability maps statistically 
stable, however. It also appears that the inclusion of an atmos­
pheric stability or moisture parameter is needed to elevate the map 
type approach to a viable short-term detailed forecasting tool. In 
addition, we are looking at hourly frequencies to determine if there 
are preferred areas of initial thunderstorm generation. We also 
intend to decrease the grid block size to one-quarter of a degree 
which will give an effective 11 0bserver radius 11 of about 14 km to 
see if this reveals smaller scale terrain influences. 

The portion of the study dealing with lightning activity levels 
points to serious flaws in the manual observations used by the 
NFDRS. Clearly the observer•s bias towards the lower LAL 1 s and the 
tendency for the observed categories to have a higher density 
singles out the current misunderstanding and shortcomings of the 
observational system. In the near future, the Boise Fire Weather 
Office will be developing an automatic LAL verification program 
using the lightning detection data and the current NFDRS limits. 
Since the LAL guide was developed before the advent of this more 
comprehensive observati ona 1 too 1, further cl imato 1 ogi ca 1 studies 
will be needed before a readjustment can be made to the NFDRS 
frequency distributions and lightning density limits. 
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Figure 3. Average Annual Number of Days with Thunderstorms (from 
Changery, 1981). 



Figure 4. Grid block (one-half by one-half degree) array for which 
lightning data is archived and analyzed. 
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Figure 5. Average Annual Number of Days with Lightning Strikes based 
on two years (1985, 1986) of data. 
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Figure 7. Number of Days with Lightning Strikes during 1986. 
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of Lightning during the period noon to midnight mdt. 
Probabilities based on 4 cases. 
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Figure 20. Summer Map Type 10 and Corresponding Percent Probabilities 
of Lightning during the period noon to midnight mdt. 
Probabilities based on 20 cases. 
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STATION 
McCall 

Krassel 

Garden Valley 

Willow Creek 

Indianola 

Challis 

Stanley 

Burns Junction 

Boise 

Notch Butte 
-
Dubois 

Island Park 

Rock Creek 

Malad 

Big Piney 

Black Rock 

Mammoth 

Hock Springs 

TOTALS 

TABLE 1 

Frequency of Correct Categories Verified Against NFDHS 
Cloud to Ground Lightning Density Limits (Fuquay) 

1985-1986 Thunderstorm Season 

LAL 1 LAL 2 LAL 3 LAL 4 LAL 5 LAL 6 
84% 18% 10% 50% 100% NH 

{192} {11} (10} {22 (2) ~02 
81% 22% 100% NR 67% NR 

{1712 (9} {42 (0} (32 ___JQ)_ 
84% 32% 33% 0% NH 0% 

(187} {192 (102 (32 (02 (l) 
80% 36% 75% 0% 50% NH 

{190) <142 (4) .(li_ (2) (OJ. 
73% 26% 22% NR 100% NR 

(1412 (23) (92 {0) (l) ______ _j_Ql 
66!1~ 25% 25% 40% 100% 100% 

{181) (82 {8) - {52 (2) ____ lU 
79% 43% 44% 14% 100% NR 

(161} (142 {9) {7) (3) (0) 
89% 26% 0% NR 100% 0% 

(652 {272 ill2 (02 (12 (l) 
93% 33% 0% 0% 0% 67% 

('1932 {212 {5) ('6) ~l) __ ____ill 
64% 50% 25% 100% NR NR 

(1432 (22 (41 (I} (02 _____ (0) 
62% 31% 10% 25% 0% NR 

(169} (322 (102 ( 14_l_ _________ _____ Jll_ __ ------· __ _{_Q _)_ 
48% 28% o~.; oo-'O 75% NR 

('191) (182 (62 - < 5 L _____ i12,. _____ ........ ___ _j.Ql 
69% 0% 0% 34% 0% NR 

(1322 (152 __ .ill_ (32 ____ -_(Jj_ _____ ( 0) 

76% 12% 40!1~ 22% 76% 50% 
-{"84) (17} ( 10) __________ (~2. _____ {25) _______ _(4) 

56% 26% 22% oo/ /o 83% NR 
(134_) __ 192 {18) ill ill_ __ (0) 

66% 14% 36% 0% 100% 50% 
(146) (28) < n.L _____ ( iL ______ m ______ m 

61% 25% 31% ll% 25% 100% 
(1432 {362 (26) (9) (4) (l) 

55% 30% 37% 50% 1009~ 33% 
(86) (63) (30) (2) {1) (3) 

72% 26% 29% 18% 72% 50% 
(2,709) (376) ( 188) (72) (58) (16) 

·-----------

Total number of events in parenthesis 
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TABLE 2 

Lightning Density Mean, 
Standard Deviation and Range 

for Man Observed Thunderstorm Days 
by LAL Category 

Station LAL 2 LAL 3 LAL 4 LAL 5 LAL 6 
McCall Mean 91 42 44 276 NR 

S.D. 101.0 43.2 
Range 0-277 0-127 6-82 206-346 

Krass ell Mean 52 28 NA 102 NR 
S.D. 66.5 8.7 76.9 
Range 0-214 23-41 15-160 

Garden Valley Mean ll 46 245 NR 199 
S.D. 13.8 73.8 216.8 
Range 0-47 0-242 46-476 

Willow Creek Mean 45 18 149 79 NR 
S.D. 89.8 12.4 
Range 0-334 4-34 38-260 24-134 

Indianola Mean 78 147 NH 322 NH 
S.D. 83.4 154.0 
Range 0-302 3-431 

Challis Mean 47 149 123 181 24 
S.D. 47.5 153.2 153.3 
Range 1-151 2-389 19-392 134-227 

-----
Stanley Mean 21 42 85 137 NH 

S.D. 22.3 36.4 101.3 8.4 
Range 0-59 1-99 4-267 132-147 

Burns Junction Mean 22 79 NR 118 0 
S.D. 72.6 247.3 
Range 0-360 0-783 

Boise Mean 12 4 86 25 39 
S.D. 12.8 3.2 75.2 23.5 
Range 0-50 0-8 10-197 16-63 

North Butte Mean 72 126 85 NR NR 
S.D. 100.4 83.8 
Range 1-143 19-198 

Dubois Mean 75 216 191 25 NR 
S.D. 121.7 179.6 186.1 
Range 0-505 48-574 l-324 
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STATION LAL 2 LAL 3 LAL 4 LAL 5 LAL 6 

Island Park Mean 51 174 327 224 NR 
S.D. 49.9 125.7 268.1 220.7 
Range 1-149 84-395 114-753 51-545 

Rock Creek Mean 129 233 133 78 NR 
S.D. 222.5 156.8 75.8 
Range 0-876 136-465 68-216 

Malad Mean 59 46 208 426 46 
S.D. 72.6 67.3 333.1 417.1 37.7 
Range 0-206 0-190 1-1,049 14-1,659 12-82 

Big Piney Mean 130 193 335 282 NR 
S.D. 169.5 216.8 158 
Range 0-476 0-709 12-657 72-478 

Black Rock Mean 115 58 224 257 103 
S.D. 171.2 42.7 212.1 
Range 0-815 0-109 4-507 17-188 

Mammoth Mean 49 98 205 281 23 
S.D. 77.3 96.9 138.2 384.2 
Range 0-366 0-392 17-466 73-857 

Rock Springs Mean 84 94 106 272 52 
S.D. 113.2 90.7 71.4 
Range 0-391 4-337 60-152 8-134 

TOTALS Mean 72 104 177 298 57 
S.D. 114.1 136.1 197.2 321.9 64.1 
Range 0-876 0-783 1-1,049 14-1,659 8-199 
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LAL Category 

NFDRS 
(Fuquay) 
Limits 

New Limits 
To Obtain 
NFDRS 
Frequency 
Distribution 

NFDRS 
Relative 
Frequency of 
Thunderstorm 
Days per 
Category 

TABLE 3 

Number of Cloud to Ground 
Strikes within 2,500 mi2 Area 

Per LAL Category 

l 

No 
lightning 

No 
lightning 

No 
lightning 

2 3 

l-10 11-50 

1 2-15 

10% 35% 

37 

4 5 6 

51-100 >100 11-50 

16-118 >118 2-15 

----·-·---···--

35% 18% 2% 

-----·-----
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