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HEAVY RAINS AND FLOODING IN MONTANA: 
A CASE FOR SLANTWISE CONVECTION 

ABSTRACT 

A strongly developing cyclone east of the Rockies moved northward along 
the Montana/North Dakota border and deposited an inch or more of 
precipitation throughout eastern Montana. Embedded in this precipitation 
area was a heavy band, with rainfall amounts exceeding 7 inches over a 24 
to 36 hour period. Kinematic vertical velocity profiles are examined. 
The possible roles played by frontogenesis and symmetric instability are 
investigated. The potential operational use of symmetric instability 
concepts, for both diagnostics and prediction, are discussed with respect 
to today's operational environment and that of the future. 
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HEAVY RAINS AND FLOODING IN MONTANA: A CASE FOR SLANTWISE CONVECTION 

I. INTRODUCTION 

During the week of September 22, 1986, an unseasonably strong upper 
level trough developed over west,ern North America. As this pattern 
evolved, the remains of Hurricane Newton moved across central Texas 
into the midwest and moisture from tropical storm -Madeline became 
entrained into the western states ... The result was copious rainfall 
for much of the region and several severe weather events such as 
tornadoes in northern California and high winds in Utah and Montana. . . 

The most devastating. aspect of this storm, however,. was probably 
the flooding event that occurred in Montana. There, moisture from 
both of the tropical storms was combined to produce rainfall amounts 
between 5 and 8 inches over an ,approximately 4800 mi2 (12,442 km2) 
area between Havre and Glasgow in north-central Montana. The 
heaviest rains fell between 11:00 p.m. MDT September 24 and 8:00 
a.m. MDT (0500 to 1400 UTC) September 25. This heavy rain event 
caused severa 1 rivers and streams to overflow their banks with 
record to near-record flooding that lasted for several days. 

This paper has four main sections. First, it will review the 
synoptic development and observations associated with this storm. 
Secondly, it examines the performance of the short-term numerical 
models, with emphasis mainly on the model development of the surface 
system (due to its implications on low-level convergence) and the 
model precipitation forecasts. Third, it discusses some of the 
physical processes that may have been involved in producing this 
heavy rain event. Finally, a summary of the main points are presented. 

II. OBSERVATIONS 

A. Large Scale 
- . 

Early in the week prior to this heavy rain event, the large 
scale was characterized by a split in the eastern Pacific with 
a closed low forming along the.California coast in the southern 
branch of the flow (Figure 1). The Medium Range Forecast 
(MRF) model predicted that the low would move southeastward 
and then open up and move eastward in response to the development 
of a full latitude trough along or just off the west coast 
(Figure 2). The Western Region prognostic map discussion (PMD) 
from the 22nd stated: 

..... MRF forecasts the split to change into a full latitude 
trough ••• around ·125 to 130W. Have no quarrel with this 
solution ... 

2 



Fig. l. 

" w 

"' 

500 mb hemispheric initial height analysis 

~ ~ ~~0000 UTC September 22. 

MRF 96-hour forecast of 500 mb heights valid 
~ 0000 UTC September 26. 

~~Y-N....-..K ~~ 

Fig. 3. 500 mb hemispheric initial height analysis 



It seemed a ·reasonable solution in light of the apparent 
retrogression of the upstream trough in the western Pacific. 
The MRF, however, had been having a difficult time handling 
some of the changes across the Pacific.· Verification showed 
that the original trough near the dateline continued as a 
persistent feature throughout the week. As a result, the full 
latitude trough that developed later in the week was centered 
over western North America - farther east than the MRF had 
predicted (Figure 3). Apparently, the key to the model error 
was the poor handle it had on the upstream flow pattern. 
Otherwise, the model correctly predicted the development of a 
full 1 atitude trough near the west coast over several runs, 
including the one as shown in figure 2. 

Be Synoptic Scale 

A series of 2-mile infrared satellite pictures (Figure 4) and 
corresponding 500mb (Figure 5) and sea level pressure analyses 
(Figure 6) are shown for the 36-hour period leading up to 1200 
UTC September 25. 

By 0000 UTC September 24, moisture from the remains of tropical 
storm Madeline was entrained into the southwest, primarily 
into Arizona and Utah. The moist band can be seen in the IR 
satellite image {Figure 4a) extendin'g from about 20N/130W 
northeastward into Utah. Also evident from Texas to Nebraska 
is convection which resulted from the northeasterly_ movement 
of moistu·re from hurricane Newton. The low that earlier 
formed along the northern California coast had moved into the 
Los Angeles basin .. During the next 12 hours, it accelerated 
eastward into western Arizona in response to the digging 
short-wave trough along the Pacific northwest coast (Figure 
5b)c By 0000 UTC September 25, the open trough remains of the 
original closed low were approaching southeastern Wyoming 
(Figure 5c). By 1200 UTC September 25, the associated vorticity 
center- had moved northward along the eastern Montana border 

· ahd i ntens i fi ed (Figure 5c:!). · · 

At the surface, a closed 986mb low formed by 0000 UTC September 
25 east of the Rockies in eastern Wyoming and eastern Montana 
{Figure 6c). This low mav·ed straight northward and intensified 
dramatically to a 974 mb central pressure during the next 12 
hours (Figure 6d). It was during the last 12-hour period that 
heavy rains began in eastern and north-central Montana. An 
inverted trough extended to the northwest from the surface low 
center, parallel to and along the heavy rain axis. It is 
hypothesized that this trough played an important role in the 
location and intensity of the observed heavy rainfall. 
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Fig. 4. 

a b 

1201 25SE86 28E-4ZA 00581 1033f UCS 
~-· I '._,;.,' ..;,..'~;-,.;.,.,..,.."!' 

c d 

2-mile IR satellite sequence for a) 0000 UTC September 24, b) 1200 
September 24, c) 0000 UTC September 25 and d) 1200 UTC_ September 25. 
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a 

b 

Fig. 5. LFM 500 mb height and vorticity initial analyses for a) 0000 UTC 
September 24, b) 1200 UTC September 24, c) 0000 UTC September 25 and 
d) 1200 UTC September 25. 

6 



c 
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Fig. 5 (cont.) 
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a 

b 

LFM sea level pressure initial analyses for a) 0000 UTC September 
24, b) 1200 UTC September 24, c) 0000 UTC September 25 and d) 1200 
UTC September 25. 
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Fig. 6 (cont.) 
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C. Rainfall Observations 

Figure 7 shows the rainfall observed in Montana over the 
course of this storm, from late on the 24th through early on 
the 26th. Heaviest precipitation fe11 along an axis from 
about 60 miles southwest of Glasgow to 20 miles east of Havre. 
2 inch ra i nfa 11 tot a 1 s extended both southeast and north of 
the state. The largest amounts were concentrated in north­
central Montana and into southern Saskatchewan. Topography 
over the area shows some, but not a great deal of undulation 
(Figure 8). All elevations below 3000 feet above sea level 
are shaded, highlighting the Milk and Missouri River basins. 
Lack of significant topographical barriers seems to preclude a 
major topographical impact on the heavy precipitation amounts. 
Prec i pita t ion was first reported in southeastern Montana 
around 2100 UTC September 24. The 1 ow was deepening across 
western South Dakota and Nebraska at that time with a central 
pressure near 982 mb (Figure 9). By 0300 UTC September 25 
(Figure 10), the rain had begun in northern Montana with the 
central pressure of the surface low dropping to near 974 mb at 
the Montana/Wyoming/South Dakota intersection. Heaviest 
rainfa11 from 0600 UTC to 1800 UTC was observed over the 
Missouri and Milk River watersheds (west of Glasgow and east 
of Havre). During this time, the surface low tracked northward 
to near the northern Montana/North Dakota border, had deepened 
to near 970 mb at 1200· UTC and filled to near 972 mb at 1800 
UTC (Figures 11, 12). 

The inverted trough extended along the heavy rain axis north­
westward from the low during this period. The heavy rains 
apparent 1 y inc rea sed northwestward and decreased from the 
south along the inverted trough axis during this period. 
After 1200 UTC, the rains had diminished across the Missouri 
River basin. By 0900 UTC Medicine Hat, Alberta (YXH) was 
reporting moderate rainfall (the Havre report was missing). 
Both Havre and Medicine Hat then indicated moderate rainfa11 
on the 3-hourly maps until 1800 UTC. The intensity had decreased 
to light rain ~t both-site~ at 2100 UTC and beyond. 

D. Derived Fields 

Perhaps one of the most important forcings involved in any 
developing system is the horizontal and vertical structure of 
convergence.. Likewise, in a case such as this where very 
heavy amounts of precipitation fell, convergence patterns must 
exhibit strong signals in the horizontal flow fields to produce 
the required vertical motion field. Mesoscale convergence 
patterns were calculated at the surface, 850, 700, 500, 300 
and 250 mb on 0000 UTC and 1200 UTC of the 25th, these times 
being just prior to and during the late stages of the heaviest 
rainfall across Montana, respectively. At 0000 UTC, the 
values shown are for 45N/106W - near the convergence centers 
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fig. 8. Topography of Montana east of the continental divide. Shaded areas 
are below 3000 feet above sea levelo 
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10 

11 
Fig. 9. Sea level pressure analysis valid 2100 UTC September 24. Contour 

interval 2 mb. 

Fig. 10. As in Figure 9, except for 0300 UTC September 25. 

Fig. 11. As in Figure 9, except for 1200 UTC September 25. 

Fig. 12. As in Figure 9, except for 1800 UTC September 25. 
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Fig. 13. Kinematic .divergence (dashed) and vertical velocity profiles (solid). 
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to 48N/111W near the tropopause for 1200 UTC September 25m Vertical 
velocity assumes no riet columnar divergence; constant 1 inear correction 
method used for normalization. Divergence calculations based on a 
1.20 longitude x 1.40 latitude grid; two smoothing passes made. 
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of action. At 1200 UTC, the values are for 48.5N/l09W. The 
analysis was extrapolated to 200 mb, the location of the 
tropopause according to the nearby Glasgow soundings. These 
calculations are summarized by dashed lines 1 and 2 in Figure 
13. One of the striking points in this analysis is that 
kinematic va 1 ues show significant total columnar divergence 
through the layer at 0000 UTC. Not coincidentally, this was 
the time at which the surface pressure was deepening in south­
eastern Montana. At 1200 UTC, the convergent nature of the 
vertical layer indicates that the system is filling through 
northern Montana. 

Figure 13 also shows the resultant vertical motion values at 
0000 UTC and 1200 UTC. Vertical motion is calculated from the 
fixed lower surface, assuming mass continuity and no net total 
convergence or divergence in the column. Therefore, ·the 
change in vertical motion with height is directly related to 
integrated horizontal convergence over each individual layer. 
For our purposes, given only discrete observations, averaging 
convergence values at each level gives us the mean convergence 
over the 1 ayer which we multi ply by the thickness of the 
layer. This value equals the change in vertical motion over 
the layer. (Since total divergence values did not equal 0, 
the constant correction method was used throughout th~ vertical 
column so that the vertical velocity was also 0 at the tropopause, 
thus satisfying the continuity equation). 

There are two 1200 UTC profiles of divergence and vertical 
velocity shown fn Figure 13. One assumes the purely upright 
profile of convergence/divergence couplets, as discussed 
earlier, at 48.5N/109W. The other is more realistic in that 
it follows the convergence or divergence axes to the southwest 
with height - sloping across the frontal zone more as a parcel 
would travel. This will be elaborated on later. The kinematic 
vertical motion profiles show va.l ues around 20 cm/s (approximately 
equal to 20 microbars/s - the value depicted on the standard 
operational vertical velocity prognoses). These values represent. 
the maximum present over the area. It should "be noted that 
they are representative of a 155.4 km x 91.2 km (14,172 km2) 
area given that such was the grid spacing of the convergence 
calculations. While these are not impressive values when 
compared with those found within thunderstorm updrafts, on 
such a scale as this, they are significant vertical velocities. 
Analyses using tighter grid spacing (llO km x 76 km) yield 
results which are on the average about 30% 1 arger, thus indicating 
vertical velocities of over 26 cm/s over an 8360 km2 area. 
The series of convergence charts used are shown in Figures 14 
and 15. Table 1 summarizes the values used for calculating 
the vertical velocities on Figure 13. 
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Fig. 14. 

a b 

c 

e f 
Mesoanalysis of convergence at 0000 UTC September 25 at a) surface, 
b) 850 mb, c) 700 mb, d) 500 mb, e) 300mb and f) 250 mb. Values based 
on 1.40 latitude x 1e20 longitude grid with 2 smoothing passes. 
Negative values indicate convergence, units are 10-6 sec-1 with a 
contour interval of 10: -Heavy 1 ine is zEiro ·c-o-ntour. 
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Fig. 15. As in Figure 14, except for 1200 UTC September 25. 
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mean layer 
level layer DIY(+)/CONY(-) ht AGL (m) layer thickness(m) DIY (+)/CONY (-). 

ooz 12Z-U 12Z-S OOZ 12Z-U 12Z-S OOZ 12Z-U 12Z-S ooz 12Z-U l2Z-S 

sfc -30 -35 -47 0 0 0 
1 500 500 500 -20 -41 "60 

850 -10 -60 -73 500 500 500 
2 1650 1600 1600 -10 -43 -52 

700 -10 -26 -31 2150 2100 2100 
3 2690 2700 2700 - 5 -45 -50 

500 0 -64 -70 4840 4800 4800 
4 0 3480 2800 0 -32 -35 

LND 0 0 0 4840 8280 7600 
5 3700 200 880 40 3 11 

300 '80 5 21 8540 8480 8480 
6 1260 1250 1250 90 18 33 

250 100 30 45 9800 9730 9730 
7 1300 1270 1270 105 43 57. 

200 110 55 68 11100 11000 11000 

level layer layer dw (cm/s) w (cm/s) normalized w (cm/s) 

OOZ 12Z-U 12Z-S OOZ 12Z-U 12Z-S OOZ 12Z-U 12Z-S 

sfc 0.00 0.00 0.00 0.00 o·.oo 0.00 
1 1.00 2~35 3.00 

850 1.00 2.35 3. Q.O 2.61 1.22 .1. 94 
2 1.65 6.88 8.32 

700 2.65 9.23 11.32 9.58 4.51 6.88 
3 lo35 12.15 13.50 

500 4.00 21.38 24.82 19.61 10.58 14.66 
4 0.00 11.14 9.80 

LND 4.00 32.52 34.62 *21.94 13.89 18.54 
5 -14.80 -0.06 ~0.97 

300 -10.80 32.46 33.65 16.65 13.38 15.70 
6 -11.34 -2.25 -4.13 

250 -22.14 30.21 29.52 9.60 8.32 8.91 
7 -13.65 -5.46 -6.24 

200 -35.79 24.75 23.28 0.00 0.00 0.00 

* . At 6300 meters due to implied normalized change in vertical divergence structure 

Table 1. Summary of values used in calculating normalized vertical velocities 
in Figure 13. 12Z-U indicates values for upright calculations; 
12Z-S is for slantwise parcel trajectory. Normalized w based on the 
equation w • wzoo- (ht/htzoo * w2oo>· Dhergence values interpolated 
to the level of non-divergence (LND) and extrapolated to 200 mb 
(from 250 mb); 200 mb was approximately the tropopause based on 
sounding data. Divergence in units of 10-6 sec-1. · Layer dw determined 
by layer thickness * mean layer divergence. 
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II. MODEL PERFORMANCE 

The Limited-area Fine Mesh (LFM) model and Nested Grid Model (NG~1) 
36 and 48-hour forecasts of 500 mb height and vorticity and surface 
pressure valid at 1200 UTC September 25 are shown in Figure 16. 
The 500 mb short wave was forecast to be somewhere between the 
western Dakotas to the Canadian border of North Dakota on a 11. of 
these prognoses. The timing of the system appeared to be handled 
rather well in the day 2 forecast as the actual location of the 
vorticity center was in .western North Dakota (Figure 5d). The 
models had a much harder time resolving the magnitude of surface 
development and its location, and the related development of the 
system aloft. 

The LFM was consistent between these two model runs by forecasting 
central surface pressures near 990 mb at the central North and 
South Dakota border. The NGM was markedly different from the LFM 
at the surface, though also consistent between the two runs. It 
placed a surface 1 ow center well north of Montana with a trough 
extending southeastward toward the northern North Dakota border. 
Neither of these runs suggested the development of a ·974 mb low or 
the strong low level convergence that verified on 1200 UTC September 
25 (Figure 6d). 

Figure 17 shows the 12 and 24-hour LFM and NGM forecasts_ of 500 mb 
height and vorticity and surface pressure valid at 1200 UTC September 
25. Both models tended toward.verifying truth, as the NGM .12 and 
24-hour forecasts indicated 'the development of a 'significant "(970 
to 972 mb) surface low in northeastern Montana. Likewise, and 
perhaps as a result, the NGM developed the upper level system much 
stronger than the LFM, which forecast a surface low center between 
983 to 985mb in western North Dakota on the two runs. Both models 
had the correct trend (that is, toward greater low-level convergence 
on the shorter range runs), though the NGM more strongly suggested 
what actually occurred. 

Quite obvjously, the forecaster would have been hard pressed to 
forecast the extreme amounts of precipitation over north-central 
Montana based on either model run at 36 or 48 hours. The first 
good forecast of surface and upper level features was the NGM 24-
hour guidance. However, since no previous NGM or LFM run was 
anywhere near as strong on this short wave, it would not be· surprising 
for the forecaster to reject the best of the guidance as being out 
of line. Though the NGM was realistic in the development of the 
system in northeastern Montana, 24-hour QPF between 0000 UTC September 
25 and 0000 UTC September 26 from the most accurate (12-hour) run 
(initialized 0000 UTC September 25) indicated maximum amounts of 
1 ess than 2-1/2 inches (Figure 18) at any given model grid point 
(each representing approximately 7300 kmZ). Since these values 
represent the mean over this area, it is possible that the ma~imum 
is a smoothed representation of localized 4" rainfalls within a 
particular grid box. Given that there were reports of over 5 
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a b c 
Fig. 16. forecast 500 mb heights and vorticity9 and sea level pressure valid 

1200 UTC September 25 from a) lFM 36-hour run, b) LFM 48-hour run, 
c) NGM 36-hour run and d) NGM 48-hour run. 
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Fig. 18. 

a 

b 

NGM QPF forecasts from the 0000 UTC September 25 run - a) 12-hour 
forecast valid 1200 UTC September 25, b) 24-hour for the 12 hours ending 
0000 UTC September 26. 
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inches over twice that area, however, the short-term NGM runs, even 
with realistic surface development, significantly underestimated 
the precipitation over the heavy rain area. As a result, even if 
the forecaster bought the system development of the NGM, the amounts 
of precipitation that fell would probably still have been a surprise. 

When confronted with. the choice between the LFM and NGM model runs 
at 12 and 24-hours, the field forecaster is faced with a decision­
which model run to choose. This decision brings up two questions: 
1) is there a difference between the two models physica11y that 
would favor one over the other, and 2) if so, have these physical 
differences been evident in recent model performances? 

There are many differences between the LFM and the NGM with respect 
to the way they handle developing systems. Perhaps one of the most 
important differences between the two models in this case is the 
way surface drag over the mountains is prescribed. As described in 
Western Region Technical Attachment (WRTA) 86-30: 

"The surface drag coefficient in the NGM is determined by the 
surface roughness length ••• defined mostly by vegetation type. 
The ••• drag coefficient developed by G. Cressman ••. varied 
mostly in response to height of the ground. It (the Cressman 
coefficient) very likely gave larger frictional effects over 
the Rockies than does the NGM formulation. The LFM still uses 
the Cressman formulation of the drag coefficient." 

Therefore, the greater frictional effects of the LFM compared to 
the NGM may have made an 1mpact on the difference between the 
central pressure of the two model forecasts. 

A second difference may have been due to the grid spacing used by 
the models. The NGM may have more accurately captured smaller­
scale forcings (or maintained their intensity) better than the LFM, 
thus achieving greater surface development than the LFM. There are 
undoubtedly other physical differences between the mqdel s that 
played a role, especially those that are important when considering 
rapidly developing systems. These, however, are two of the most 
obvious differences that might influence what the sea level pressure 
fields looked like. 

Finally, the NGM surface fields tend to handle gradients and fronts 
more precisely than do the LFM fields, probably due to greater 
vertical resolution in the lower levels. This may have been an 
important difference between the two models in the 12-24 hour 
forecasts. Because of the greater low-level vertical resolution, 
the NGM may have developed the system more strongly than the LFM 
due to more accurate handling of the large amounts of latent heat 
release in the lower troposphere. As discussed· in the next section, 
1 a tent heat release is an important feature· of rapidly developing 
cyclones. 
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The second question. asks. how the models have been performing, 
attempting to pin down which of the models· have been physically 
handling the details of the, large scale flow pattern better, given 
the recent track record. In th-is instance, the NGM had been performing 
rather poorly by overdeveloping several weaker disturbances near 
Montana in the previous week or so. A simflar system to these 
erroneous N~M forecasts~ though it occurred after the case presented 
here, was discussed in WRTA 86-30, and exemplifies ·the problems the 
model had been having. With this in mind, it would have been that 
much more difficult to accept the NGM "bomb" being forecast on the 
1200 UTC September 24 r~n. · 

The major difference between the erroneous NGM developments of the 
previous week and the good forecast in this case is that the erroneous 
developments showed up in day 2 of the model run (and thus could 
have originated ill the data-poor east Pacific) whereas, in this 
case, the strong development occurred in day 1 of the run. 

III. DISCUSSION 

Up to this point, we have mainly looked at the observations and 
model performance in this case study. We have noted that there was 
fairly strong kinematic vertical motion over much of eastern Montana 
at some point during this storm. The strongest kinematic vertical 
motion apparently tracked from the southeastern part of the state 
to· near Havre between 0000 UTC and 1200 UTC September 25. He 
reviewed· the performance of the short-term models~ Ev.en the NGM 
runs which captured the ·surface deYelopment fairly well missed the 
intensity of the heavy rainfall. We have noted that while the 
rainfall was heavy over a large area, the heaviest amounts were 
oriented along a relatively narrow band, for the most part parallel 
to the trough axis from the 1 ower 1 ayers through the mi d-1 evel s 
during the heavy rain period. This section will try to apply what 
we have observed and derived to an examination of some physical 
processes that may have been important in creating this flooding 
event. 

A. Surface Low Development 

The processes which most likely aided the initial cyclone 
development seem to be fairly basic. Evidence for lee side 
tro·ughing in eastern Colora~o and Wyoming exists at the surface 
duri-ng the afternoon of the 24th (Figures 6b,c). As the 
c1 osed 1 ow and vorticity center rotated northeastward from 
western Arizona to eastern Colorado and Wyoming during the 
afternoon, strong PVA existed over the region of development 
(Figures 5b,c). 

Subsequent strong development of this system was more than 
basic; technically, it was a "bomb". The requirement of this 
classification is a deepening of the central pressure by at 
least 24mb per 24 hours, which is approximately how much this 
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system deepened between 1200 UTC September 24 and 25. While 
bombs are typically considered oceanic phenomena, this storm 
had one of the most important characteristics needed, that 
being a substantial low-level moisture supply. This moisture 
supply, in concert with the release of a large amount of 
latent heat at low levels, acts to destabilize the atmosphere 
to such a point that the vertical motion, traditionally thought 
of as the "braking term 11 to cyclone development, no longer 
retards but actually contributes positively to the surface 
development. In this regard, the fact that remnants of Hurricane 
Newton had moved into the Great Plains region over the previous 
couple of days may have impacted the system development. 
Surface dew points through Kansas, Nebraska and South Dakota 
were generally over 600F while the system developed in the 
western portion of these states. That the moisture existed at 
low levels is also important because with it, the release of 
latent heat will generally occur at lower 1 evel s which destabilizes 
the atmosphere more than latent heat release at mid or upper 
levels would. 

B. Moisture, Baroclinicity and Frontogenesis 

Associated with this system was a strong baroclinic zone 
evident at 700 mb at both 0000 UTC and 1200 UTC September 24 
(Figure 19). Amplification of a wave along a strong baroclinic 
zone is not uncommon if a perturbation is introduced into the 
flow. · 

Moisture again is an important consideration here since baroclin­
icity essentially describes the condition where surfaces of 
constant pressure and density do not coincide. In most cases, 
we simply look for the strong temperature gradient on a constant 
pressure surface. This, we reason, shows the area of greatest 
density discontinuity and, likewise, the area of strongest 
baroclinicity and potential system development. We must, 
however, include moisture in the thermal structure such that 
we 1 ook at the virtual temperature gradient, which gives a 
truer representation of the density discontinuity. 

Calculations at the surface and 700 mb, from eastern Colorado 
to western South Dakota (Table 2) sho·w that in the region of 
development, the existence of the moisture gradient across the 
thermal gradient increased the baroclinicity by over 33% in 
some areas. It can now be postulated that the reason the 
regional models may have erred so significantly on the 36 and 
48-hour forecasts in this case was because they did not incorporate 
the influx of Newton moisture into the Great Plains very well. 
Once the moisture was in the plains - on 1200 UTC September 24 
- the NGM began to develop the system strongly. The LFM also 
trended in the right direction. 

Latent heat release, besides being important. in the surface 

25 



b 

Fig. 19. 700mb height and temperature analysis fofa) 0090 UTC and b) 1200 UTC 
September 24~ Height (solid) contours every 30 meters, temperature 
(dashed) contours every 2oc. 
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Surface 
1800 UTC 9/24/86 

T 
PUB 19.5 
DOC 25.0 

S increase 
of gradient 

Td Tv 
0.0 20.3 

18.0 27.7 

T = 5.5oc 
Tv= 7 .4oc 

34.5S 

700 mb 
0000 UTC 9/25/86 

T 
DEN 3.0 
RAP 8.0 

S increase 
of gradient 

Td Tv 
-13.0 3.3 
10.0 10.0 

T = 5.ooc 
Tv= 6.70C 

34.0S 

All temperatures are in oc. 

Table 2. Temperature, dew point temperature and virtual temperature for Pueblo 
(PUB) and Dodge City (DOC) at 1800 UTC September 24, and Denver (DEN) 
and Rapid City (RAP) at 0000 UTC September 25. Temperature diffear:e, 
virtual temperature difference and percentage increase of difference 
due to moisture is shown. 
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system development due to decreased vertical stability, also 
played a frontogenetical role in this case. Evident most 
clearly on the 1201 UTC satellite picture from September 24 
(Figure 4b) is· the convection on the warm side of the baroclinic 
zone and the lack of the same over eastern Colorado. The main 
source of the moisture associated with this convection was 
Hurricane Newton. That latent heat was released in the warm 
air and not in the cooler air strengthened the thermal gradient 
and baroclinicity in the lower layers of the atmosphere. 

C. Frontogenesis and the Secondary Circulation 

If frontogenesis exists across an area (if the density gradient 
increases with time), ageostrophic circulations are required 
to adjust the atmosphere. This. adjustment is needed because 
when the density gradient increases, the thermal wind must 
also increase. But as the thermal wind increases, so must the 
actual wind, if it is to remain in geostrophic balance. 
Increasing the horizontal wind due to an increase in the 
thermal wind is accomplished through the secondary circulation, 
with positive ageostrophic vertical motions on the warm (1 ess 
dense) side and subsidence on the cooler (more dense) side of 
the baroclinic zone. The horizontal flow of the secondary 
circulation, after being turned by the coriolis force, increases 
the wind above the intensifying baroclinic zone. 

We may a1so look at this adjustment process through ageostrophic 
circulations from the point of view of Hoskins and Bretherton 
(1972), who point out that ageostrophic motions become ir'creasingly 
important as relative vorticity is no longer small when compared 
to the coriolis parameter. Recall that relative vorticity is ,, 
considered negligible, compared to the coriolis parameter 
within the quasi-geostrophic framework. As the relative 
vorticity inc~eases, it is no longer negligible and the agee­
strophic secondary circulations no longer can be considered as 
simple dynamical necessities to keep vorticity changes geostrophic 

:and ~emperature changes hydrostatic within a synoptic_scale 
system. Calculations of surface relative vorticity· at 1200 
UTC September 25 (Figure 20) show values upwards of 3xlo-5 

·sec-1 extending northwestward into north-central Montana. At 
500 mb, this value increases to Sxlo-5 sec-1 on the LFM (Figure 
5d). Obviously, these values are not negligible compared to the 
coriol is parameter and the ageostrophic ci rcul at ions must be 
considered as a si gni fi cant enhancement to the geostro phi c 
flow field. 

Additionally, Hoskins and Bretherton show that the ageostrophic 
circulation produces the tilt of the front and upgliding 
motion up the slope. This correlates we11 with the observations 
in this case, as the convergence/ divergence axes slope with 
height, probably with the frontal zone, in north·-central 
Montana at 1200 UTC September 25 (see Figure 15). 
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Fig. 20. Mesoanalysis of surface vorticity for 1200 UTC September 25, based on 
1.40 latitude x le2o longitude grid; 2 smoothing passes made. 
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The secondary ci rcul ati ons described in the preceding paragraphs, 
including the ageostrophic vertical and horizontal flow fields, 
have been related to the deformation zone process of frontogenesis­
which can produce clouds and precipitation as discussed in 
WRTA 86-15. Here, we are applying the same frontogenetical 
concepts across the increasing moisture gradient in northern 
Montana. Figure 21 shows the progression of preci pi table 
water values between 1200 UTC September 24 and 25. Intensification 
of the barocl inic zone due to vertically integrated moisture 
content is obvious across northern Montana as moisture from 
Hurricane Newton is advected across northeastern Montana from 
the Midwest. Westerly winds on the back side of the trough 
had cut off some of the moisture supply over the southern and 
western portions of Montana shortly after 0000 UTC September 
25, which helped to intensify the moisture discontinuity. The 
difference in the vertical wind profiles across the frontal 
boundary shows up rather well on the Great Falls and Glasgow 
soundings from 1200 UTC September 25, shown in Figure 22. 

D. Slantwise Convection and Symmetric Instability 

The Glasgow sounding in Figure 22 is quite moist from the 
surface to 450mb, typical of heavy rain soundings, and supportive 
of the widespread area of observed rainfall over 2 inches. 
The characteristic differences between heavy rain soundings 
and other severe weather soundings are the ab·sence of dry air 
at mid levels and the lack of significant speed or directional 
shear in the vertical. 

Though the heaviest precipitation covered a fairly large area 
in this case, it still had a linear orientation along the 
trough/convergence axis and showed amounts that were well 
above the surrounding areas of more general precipitation. 
This linear orientation suggests that some organized banding 
of convection may have existed that was not simply forced by 
the local structure of vertically integrated convergence. 

It is in light of this evidence that' we consider slantwise 
convection (due to symmetric instability) as a· possibly important 
process in producing this very heavy band of precipitation. 
Evidence supporting this possibility includes the stability 
indices of the Glasgow and Great Fails soundings - both the 
Showalter and Lifted - all of which were slightly positive. 
This is not an uncommon observation in cases of slantwise 
convection, since generally speaking, unstable atmospheres 
would more easily give rise to upright convection. Stable 
atmospheres on the other hand, have greater difficulty producing 
upright convection. 

A second important criteria for symmetric instability is the 
atmosphere's level of stability with respect to horizontal 
displacements, or it's inertial stability. For slantwise 
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Fig. 21. Vertically integrated precipitable water (solid} and cloudiness 
(hatching) for a} 1200 UTC September 24, b) 0000 UTC September 25 and 
c) 1200 UTC September 25. Contour interval .25 inches. 
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Fig., 22. a) Great Falls. (GTF) and b) Glasgow (GGW) radiosonde observations from 
1200 UTC September 25. 
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convection to occur, the atmosphere must not only be weakly 
stable in the vertical, but must also have sufficiently v~eak 
inertial stabflity to support positive horizontal buoyancy. 
From the 1200 UTC soundings in ·Figure 22, it is apparent that 
the upper 1 evel jet (200-300 mb) is nearer Great Falls than 
Glasgow. The concurrent 250 mb plot (Figure 23) shows that 
north-central Montana is under anticyclonic shear, yielding 
the situation whereby horizontal stability is weak, thus 
supporting this requirement for weak symmetric stability. 

We have noted earlier the sloping nature of the convergence 
axes with height across northern Montana. We have also suggested 
mechanisms which would have enhanced the flow field across 
this implied sloping frontal axis. If symmetric instability 
exists, parcel displacement along the frontal axis may be 
oriented in such a manner that the parcels become positively 
buoyant, even in a statically and inertially stable environment. 
This no vel and not-so-straightforward concept is explained 
most clearly by Sanders and Bosart (1985), following the 
theory developed mathematically by Emanuel (1983b). Emanuel 
(1985) has also shown that the region of ageostrophic ascent 
may become intense and concentrated in a relatively narrow 
band in the ascent along the sloping frontal boundary. This 
concentrated band of ascent may exist if the potential vorticity 
(the absolute vorticity times the change of potential temperature 
with respect to pressure) becomes very small in the warm air 
(due RJainly tq. a pseudo-adiabatic .lapse rate as applied to 
this case) and is not small in the region of downward motion, 
as is the case when such regions are unsaturated. Questions 
have been raised, however, as to whether symmetric instability­
produced bands of intense ascent increase the total precipitation 
over the area upon which its influence is felt, or if it 
simply redistributes the precipitation into strong bands. 
Current research projects are focussing on this question. 

The whole concept of symmetr1 c instability can be viewed as 
being analogous to upright convection. The djfference is that 
instead of assessing stability bj forcing a parcel vertically, 
stability is determined by forcing the parcel both vertically 
and horizontally. The angle of forcing is taken to be along a 
surface of constant momentum M, as defined by Emanuel (1983b), 
with M = v + fx, where f is the coriolis parameter. If there 
exist locations where, following an M surface upward, the 
equivalent potential temperature (Qe) decreases, instability 
exists. Much the same, if a parcel travels a slantwise path 
such that 9e does not increase and M does not decrease, that 
parcel has encountered symmetric instability and is unstable, 
both vertically and horizontally, along that path, so long as 
such conditions exist. 

To assess the possible existence of symmetric instability in 
this case, Figure 24 has plotted on it the 9e and M fields 
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Fig. 23. 250 mb plot and isotach analysis for 1200 UTC September 25. Line AB 
indicates the extent of the cross section in Figure 24, with stations 
used indicated by the blackened centers. 
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Fig. 24. Vertical cross section 801-GTF-GGW-YQD, 1200 UTC September 25. 
Absolute momentum M is solid (contour interval 10 m/s), equivalent 
potential temperature is dashed (contour interval 4K; intermediate 
dotted 1 ines yield "interval of 2K across portion of cross section), 
and stippling indicates ares of symmetric instability. 
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through the Boise (BOI), Great Falls (GTF), Glasgow (GGW) and 
The Pas (YQD, Manitoba, Canada) cross section (as shown on 
Figure 23) at 1200 UTC September 25. The quantity M (= v + 
fx) was derived whereby vis the component of flow oriented 
perpendicular to the cross section, f varies with latitude and 
x is the distance along the cross section beginning at Boise. 
Those areas which are potentially unstable to slantwise motions, 
as described ab6ve, are stippled~ It is clear that the main 
area susceptible to slantwise instability is between Great 
Falls and Glasgow - and exists throughout a significant depth 
of the atmosphere. This area of potential slantwise instability 
coincides well with the band of extreme precipitation that 
fell across north-central Montana at that time. 

It is entirely possible, and indeed, seems likely, that such a 
process took place in this case to help produce the 1 i ne of 
heavy precipitation along the baroclinic boundary, just based 
on the existence of the symmetric instability. It seems even 
more probable considering the magnitude of the localized heavy 
precipitation compared to the more general precipitation area, 
and the slightly stable nature of the available soundings 
adjacent to the precipitation observations. Slantwise motions 
probably existed across this area due to the frontogenetical 
forcings discussed earlier. These may have been oriented such 
that the symmetric instability was tapped and slantwise convection 
occurred. 

The operational numerical models should be ·able to capture 
details such as symmetric instability and slantwise convection 
given that they run off the primitive equations of motion and 
are not limited by quasi-geostrophic restraints (such as 
considering relative vorticity negligible).· The NGM may have 
precisely captured the flow field around this baroclinic zone; 
however, coarseness of the grid and field smoothing may have 
limited its intensity- thus, the precipitation amounts were 
too weak. Because of the grid spacing and smoothing, the 
minimum scale of circulation dynamics which·the NGM is able to 
capture and represent may be near 200 km. This was approximately 
the scale of the ageostrophic circulation in this case as 
determined by the axes of maximum convergence and divergence 
at 1200 UTC September 25. 

IV. OPERATIONAL APPLICATION OF SYMMETRIC INSTABILITY 

A. Today•s National Weather Service (NWS) 

1. Finding Symmetric Instability 

As of this writing, assessing the existence of symmetric 
instability is no small chore in the operational NWS 
environment. The tools are there to calculate the equivalent 
potential temperature, 9e, and momentum, M, through a 
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given cross section, which appears to be the simplest 
method of identifying symmetric instability. No cross­
sectional software has thus far been developed on the NWS 
AFOS system that has shown the ability to analyze enough 
detail through a cross section to aid the forecaster. 
Therefore, the ability of similar software to analyze the 
even greater detail sometimes present in the 9e and 
momentum cross sections with enough accuracy is also 
suspect. It appears that the best today' s operational 
meteorologist can do to assess the existence of symmetric 
instability is to plot the 9e and momentum values through 
a cross section, and draw in the lines by hand. Calculating 
the values can be done easily on the computer. 

It is also important to re-emphasize that even though 
symmetric instability exists, unstable motions will not 
occur unless slantwise motions exist such that 9e does 
not increase and M does not decrease along the parcel 
path. Only under such conditions will slantwise convection 
materialize due to symmetric instability. Typically, 
frontogeneti cal forci ngs are important ·contributors in 
the development of these slantwise motions and therefore, 
observations of mesoscale or synoptic scale frontogenesis 
should be keys to identifying the potential for slantwise 
convection. 

A final problem in finding symmetric instabil.ity is the 
time and space seal es at which upper air data are currently 
ava i1 able·. An important episode of symmetric instability 
may exist and yet be undetectable through the radiosonde 
observations due to the time or location of its occurrence. 
Besides inference, very little can be done in such a 
case, and the forecaster's point of view of the existence 
of symmetric instability becomes more diagnos.tic and less 
predictive. 

2.- If Symmetric i11stabil ity Exists· 

Assuming the forecaster knows symmetric instability 
exists, how will it be reflected in the quality of the 
forecasts that are issued? There are probably three 
pri nci pl e ways the products issued caul d be improved by 
knowing symmetric instability exists. First, where there 
is symmetric instability, precipitation may be more 
convective, intense and unsteady than in surrounding 
areas. Secondly, the location of such weather can, at 
times, be narrowed down more closely. Finally, the 
forecaster, with awareness heightened, may highlight the 
potential for more intense precipitation in special 
statements, will anticipate and watch for development in 
real-time, and will call for observations in the instability­
prone areas. 
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B. The AWIPS~90 Era 

1. Finding Symmetric Instability 

Many of the changes proposed to take place in the NWS 
over the next 5 to 10 years should en~ahce the ability of 
the forecaster to identify mesoscale processes such as 
symmetric instability more easily. Profil ers, where they 
are installed, will not only provide a greater density of 
upper air observations, but also more frequent observations. 
Initially, the NWS profilers may yield only wind observations. 
This, in itself, will help the forecaster assess th.e 
momentum surfaces more accurately and more frequently. 
The temperature and moisture fields, however, are also 
important. Unfortunately, the. profil ers are not nearly 
accurate enough nor provide en~ugh detail in determining 
the thermal and humidity structures aloft for symmetric 
instability analysis. 

There is one possible solution to this problem. Westwater 
and Grady (1980) and Hogg, et al. (1983) suggest that by 
combining profiler and VAS sounding data, a profile of 
the thermal and moisture characteristics may be obtained 
that is significantly more accurate than that produced by 
either system alone. These systems complement each other 
rather well, as each system's strengths tend to be the 
other 0 s weaknesses. 

2. Mesoscale Models 

With the inclusion of profiler data and, possibly, satellite 
data in the weather service of the future, proposed 
operational scenarios include the addition of mesoscale 
numerical models that can be run at each site. With a 
grid spacing of 40 km or less, these models should capture 
details of symmetric instability more easily than today's 
regional models, and t'he result should. be better guidance 
for the forecasters. 

The future forecasting trend will be to provide more 
detailed and accurate short-term forecasts, especially 
with respect to significant weather episodes. The potential 
exists for both diagnostic and predictive use of symmetric 
instability concepts in the future of the NWS. Given 
better guidance and greater diagnostic confidence of the 
existence of symmetric instability, the forecaster should 
be able to put more accurate deta i1 into the forecast 
than is possible today. 

38 



V. SUMMARY 

The case of extreme amounts of rainfall and record flooding on 
September 24-25, 1986 was examined. It is hypothesized that moisture 
from Hurricane Newton helped not only develop the 1 ow 1 evel circulation 
center, but also provided the impetus for enhanced ageostrophic 
vertical motions along the inverted trough axis through northern 
Montana. The kinematic vertical velocity profiles supported 20 
em/sec ascent along the trough axis during the period of maximum 
rainfall, with this value being representative of an area of over 
14,000 square km. Slantwise convection may have had a significant 
impact on the enhancement of the heaviest, flood-producing band of 
precipitation. 

The numerical models performed rather poorly at 36 and 48 hours. 
Improvement was shown on the 24- and 12-hour runs, especially on 
the NGM. It is possible that the models improved in the shorter 
term because they then knew about the moisture advected into the 
Midwest the previous day by Hurricane Newton. Still, the best LFM 
forecast missed the central surface pressure by 10 mb - that from 
the 12-hour forecast. Neither model came close to generating the 
observed amounts of precipitation, though the potential was suggested. 

This was an extreme event and was not an easy operational forecast 
in terms of the amount and precise locatio·n of the very heavy rain. 
The processes associated with embedded mesoscale secondary circu.latians 
and slantwise convection would have been difficult to diagnose 
numerically in the operational setting~ though both caul~ have been 
implied. Neither the Sanders and Bosart or the Emanuel articles 
mentioned earlier made any strong statements about how the operational 
community could·use this new theoretical information on a real-time 
basis. However, under situations where s 1 antwi se pa rce 1 movement 
is suggested across a frontogenetic boundary, the potential should 
be considered, especially when the sounding observations indicate 
slightly stable lapse rates. In such cases, slantwise convection 
may also be a method which produces heavy precipitation, even when· 
little is expected. 

As shown in this case, mesoscale calculations of convergence fields 
may indicate the presence of slantwise parcel movement across the 
frontal boundary. Regular diagnostic use of convergence charts may 
have helped the forecaster• s nowcasting effort, though any more 
than highlighting the potential for heavy rain and flooding in this 
case may have been beyond the practical capabilities given the 
information available. 

The future does provide hope for the operational forecaster, as 
regional models with tighter grid spacing, operational mesoscale 
models and denser observation networks should capture more accurately 
the dynamical processes that occur. Likewise, preci'pitation forecasts 
may more accurately reflect the potential for these extreme events. 
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