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THE LAS VEGAS McCARRAN INTERNATIONAL AIRPORT MICROBURST 
OF AUGUST 8, 1989 

I. INTRODUCTION 

On August 8, 1989, the Las Vegas area 
experienced at least two severe micro­
bursts. The first occurred at the Hender­
son Sky Harbor Airport south of the city 
(Figure 1), with the second at McCarran 
International Airport minutes afterward. 
Wind gusts of 46 m sec-1 (90 kt) were 
measured at McCarran International 
Airport by the Federal Aviation Admin­
istration (FAA) wind indicator at mid­
field. In addition, an abrupt wind shift 
near the end of the microburst event 
resulted in an approximate net change of 
over 67 m sec-1 (130 kt) down the active 
runway over a period of about five 
minutes. 

Total damage at both airports was 
estimated to be 14 million dollars. 
Approximately 82 damaged aircraft were 
included in this estimate. Fortunately, 
there were no injuries or deaths reported 
with either microburst. However, two 
aircraft did experience extreme difficulty 
during takeoff and landing operations 
during the initial phase of the McCarran 
micro burst. 

II. DEFINITIONS 

The downburst, a concentrated downdraft 
that can occasionally be produced by a 
thunderstorm, has been the object of 
meteorological research for several 
decades. The most severe form of the 
downburst, the microburst, has been 
identified as a contributing factor in a 
number of commercial aircraft accidents 
(Caracena et al. 1989). The accidents are 
usually the result of a loss of lift during 
takeoff or landing, when the aircraft 
enters a region of rapid change in both 
wind speed and direction (Figure 2). The 
danger to aircraft is the severe low-
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level wind shear associated with the 
micro burst over small spatial scales ( 4 km 
or less). 

Downbursts have been categorized 
according to their spatial and temporal 
scales (Fujita, 1985) (Table 1). In the 
context of the planetary scale, a 
macroburst is defined as a mesoscale 
downburst. The leading edge of the 
macroburst outflow at the earth's surface, 
labeled the gust front, is often detected 
by radar or is analyzed as a mesoscale 
feature on synoptic scale surface charts. 
The gust front is usually the product of 
downbursts from multiple thunderstorm 
cells. 

The microburst, however, is defined as a 
misoscale downburst. The localized 
spatial and temporal nature of the 
microburst renders it nearly impossible to 
detect using present meteorological 
remote sensing tools; e.g., incoherent 
radar, satellite imagery, etc. 
Furthermore, microbursts quite often are 
products of innocuous-looking clouds 
(Mielke et al. 1987 and Brown et al. 
1982), especially in the western United 
States. 

III. PHYSICAL DESCRIPTION OF THE 
MICRO BURST 

Though the actual structure of the micro­
burst may be quite complex, a general 
description of the microburst life cycle is 
depicted in Figure 3 (after Fujita, 1985). 
The intense, jet-like downdraft strikes the 
ground much like the model of steady 
fluid flow impacting a solid flat plate. An 
impact pressure field causes the downflow 
component to decelerate as air approaches 
the surface, and the horizontal component 



of the Wind to accelerate · outward from 
the impact center (Caracena, 1989). 

Notice in Figure 4 the vortex ring struc­
~ure of ~he microburst surrounding the 
downdraft core. 'This feature is believed 
to be caused by vortex instability gen• 
erated at the edges of the microburst by 
th.e return updraft (Caracena, 1982). 

As the microburst strikes the surface of 
the earth, theory indicates that the vortex 
ring spins up at the periphery (Figure 5). 
The dynamics of this expanding ring in 
the deformation field at the base of a 
strong downdraft in the vortex ring model 
may explain why a microburst is obser-ved 
to strengthen as it expands after surface 
impact (Wilson et al. 1984). Recent 
photographs of visible dust· generated· by 
microhursts in the Denver area have 
confirmed the ring structure (Fujita, 
1985). 

One or more vortex rings may be initiated 
in a microburst. The vortex ring, or rings 
can continue to expand, and spread out­
ward near the ground until the downdraft 
ceases supplying niass. At this point the 
microburst usually dissipates rapidly. The 
sequence of events described above typi­
cally lasts about five minutes. 

IV. MICROBURST ENVIRONMENT 

Microbursts have been broken down into 
three categories (Caracena et al. 1989) 
according to the environments that pro­
duce them: extreme wet, extreme dry, 
and intermediate environment. The dry 
convective environment and the inter­
mediate environment ·produce the vast 
majority of microbursts in the western 
United States. 

The dry convective environment (Figure 
6), where moist convection is typically 
high-based, is distinguished in 'plots of 
atmospheric soundings by the "inverted V" 
formed by the temperature and dew-point 
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cl1rves. Characteristic of this profile is a 
· deep, dry mixed layer (with a dry­
adiabatic lapse rate) topped by a moist, 
cloud-bearing layer. . The dry layer 
frequently exceeds .3 km in depth in th.e 
desert southwest, such that cloud bases 
tend to be above the 600 mb level. The 
deep, dry sub-cloud layer usually 
evaporates most of the precipitation in 
the microburst before the precipitation 
reaches the earth's surface. The 
evaporative cooling is the source of most 
of the negative buoyancy for the 
downward acceleration in the sub-cloud 
portion of the downdraft. Thus, the qry 
microburst is most often identified with 
virga, or thin rainshafts where measurabl~ 
precipitation is unlikely to occur. 

Dry microbursts have been studied by 
Brown et al. (1982), Fujita (1986), 
Wakimoto (1985) and others. Thes.e 
authors have recognized the importance 
of the steep sub-cloud layer lapse rate (for 
evaporation), and the intensity of rainfall 
for the production of dry microbursts. In 
addition, these authors focus on the 
importance a weak updraft plays in the 
eventual formation of a dry microburst. 
A weak updraft produces the most 
favorable precipitation type--the lightly 
rimmed snowflake--that evaporates rapidly 
and completely during descent (Brown et 
al. 1982). 

Forecasting schemes based on the model 
of the "extreme dry" environment have 
been developed by Wakimoto (1985), 
Wilson et al. (1984), and MacDonald 
(1976). All of the methods depend on the 
existence of a moist, convectively unstable 
layer in the vicinity of 500 mb, and a dry, 
lower layer with a dry-adiabatic lapse rate. 

The "intermediate environment" is similar 
to the "extreme dry" except that the 
moist, mid-level layer is deeper, and the 
cloud bases are lower (Figure 7). The 
shallower, sub-cloud layer often produces 
heavy rains normally associated with the 
"extreme wet" microburst. It is believed 



some of the processes important in the 
"extreme wet" regime are also present in 
the "intermediate environment." 

Charba (197 4) noted that the source of 
downdraft air in Oklahoma thunderstorms 
(intermediate, or extreme wet 
environment) was environmental air 
located between 3 km and 8 km above 
ground level (based on values of 
equivalent potential temperature). The 
drier, mid-level air from the near-storm 
environment is entrained into the cloud 
(Kessler, 1986), carrying the horizontal 
momentum of the environment. The 
accompanying evaporative cooling due to 
mixing with drier air into the 
thunderstorm also contributes to the 
negative buoyancy of the downdraft. In 
addition, the kinetic energy of the 
downdraft may be intensified by the 
weight of the condensation products 
accumulated in the warm, moist updraft. 
The net result of all these processes can 
produce wind speeds of 50 m sec·\ or 
more at the earth's surface. 

Variations of the parcel theory (Fawbush 
and Miller, 1954 and Foster, 1958) have 
been utilized as gust forecasting tools in 
the "wet environment" where the 
downdraft is assumed to remain saturated 
on descent to the surface. This 
assumption is questionable in both the 
dry extreme, and intermediate 
environment where evaporation in the 
sub-cloud layer enhances the downdraft. 

The studies cited above indicate that 
meteorologists do have a reasonable 
understanding of the types of 
environments that can produce 
microbursts. However, as Caracena et al. 
(1989) states, "there is no simple index for 
estimating the potential downdraft 
strengths from conventional sounding and 
surface data." 

V. CASE STUDY 

A. The Synoptic Situation 
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Flow aloft over southern Nevada was 
dominated by a 500 mb anticyclone 
(Figures 8, 9, and 10) centered over the 
Arizona/Utah border at 1200 UTC on 8 
August 1989. 

The sounding from Desert Rock, Nevada 
(DRA) at 1200 UTC (Figure 11) showed a 
nearly saturated layer of air at about 630 
mb, and another layer from 520 mb to 
420 mb. Drier air existed from the 
surface to approximately 630 mb, and 
above the 420 mb level. The sounding is 
representative of the "intermediate 
environment" (Figure 7), where multiple 
processes may effect the strength of the 
microburst. This "hybrid" sounding is 
similar to the conditions Ellrod (1989) 
found in the Dallas microburst that led to 
a commercial airline disaster in 1985. 

The Showalter and Lifted Index (Figure 
12) were both zero or less, and the K 
Index was greater than 30 across much of 
the desert southwest. The layer stability 
analysis (Figure 13) also indicated an 
unstable air mass (layer stability is 
defined as the difference in the mean 
potential temperature between the 850-
500 mb layer and the 700-300 mb layer. 
Small values imply instability while large 
values imply stability). These conditions 
were suggestive of a large area of mid­
level potential instability. 

At 1200 UTC satellite images and 
lightning detection maps (Figures 14 and 
15) revealed areas of dissipating 
convection across south-central Nevada, 
and in the Sierra Nevadas. Another line 
of convection, apparently initiated earlier 
that day at about 0300 UTC (Figures 16, 
17, and 18) in the vicinity of Prescott, 
Arizona, from the outflow boundary of a 
mesoscale convective system (MCS) to the 
south, was evident over northwestern 
Arizona. This line was drifting 
northwestward at 3 to 4 m sec·1 as it 
slowly dissipated. Surface dew points 
remained unusually high (13 o C to 18 o C) 
throughout the day across the desert 



southwest at least partly due to the 
precipitation from the nocturnal 
thunderstorm activity. 

The dissipating area of convection moved 
out of northwest Arizona and into the Las 
Vegas area by 1700 UTC (Figure 19). 
The dissipating line of towering cumulus 
and cumulonimbus arched from about 
Mesquite, Nevada to Las Vegas, 
southwestward to near Twentynine Palms, 
California. 

Thunderstorms began forming over the 
high terrain of southern California by 
1900 UTC, along the old instability line 
(Figure 20). The convection grew steadily 
in areal extent as it moved northeast into 
the California-Nevada border area at 2330 
UTC (Figure 21). 

Cloud-top temperatures were near -5ooc 
(Ellrod, personal communication), 
indicating cloud-top heights near 12 km 
(40 kft). Also evident in the 2330 UTC 
imagery was · the extent that the 
convective area had developed eastward, 
as it moved toward the northeast. 

Sounding data from DRA at 0000 UTC 
(Figure 22) displayed very little change 
from the 1200 UTC measurements. 
Apparent, though, .. was a slight increase 
in precipitable water (from 0.97 to 1.09 
inches) due to slightly higher mixing 
ratios through the sounding, and a deeper 
mid-level moisture layer. Low-level winds 
(below 2.5 km) had also changed from 
west to southwest. 

The 0000 UTC (Figure 23) surface 
analysis exhibited few unusual features, 
other than the high dew points. Pressure 
tendencies across all of the southwest 
were typical of the semi-diurnal effect. 
Also evident was the usual surface 
thermal low, centered in the Las Vegas 
area, providing a region of low-level mass 
convergence. 
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The 0000 UTC 500 mb analyses (Figures, . 
24 and 25) revealed a weak, short-wave 
trough eVident in . the wind field 
stretching from near Winnemucca, Nevada 
into central Nevada. Also evident was a , 
slight eastward shift of the · long-wave 
trough along the West Coast and the 
ridge across the intermountain region. 
This shift in. the synoptic pattern allowed 
the winds to become more southwesterly 
across central California into southern · 
Nevada. However, wind speeds at 500mb 
were less than 15 m sec·1 across. the 
entire southwestern United .States; 

Analysis of the 850 mb moisture 
convergence field (Figure 26) revealE;Jd 
strong moisture flux convergence 
persisting in the Four Corners area .. An 
area of moisture flux divergence lu:id:· 
developed from near Las Vegas; south 
along the Colorado River in northwest 
Arizona. 

At 500 mb moisture flux convergence 
(Figure 27) was apparent in a band f~om 
the San Diego, California area across Las 
Vegas into southern Utah. It should·be 
noted that the 500 mb moisture . flux 
convergence corresponded closely with th~ • 
convective activity, and short-term . 
development on the 0030-0430 UTC 
satellite imagery (Figures 28 and 29). 

B. The Microburst Event 

Between 1931 UTC (Figure 20) and 2330 
UTC (Figure 21) thunderstorm activity 
developed rapidly along the 
California/Nevada border and to the east 
of Desert Rock. A region of 
thunderstorm activity had .moved as far 
north and . east as the Spring Mountains 
and the McCullough Range to the west 
and southwest of Las Vegas (Figure 28) by 
0030 UTC. · WSO Las Vegas radar 
observed the thunderstorm activity as 
mainly VIP level 2 cells, occasionally 
reaching VIP level 3. The activity was 
moving northward at about 5 m sec·1

• 
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At approXimately 0045 UTC, an observer 
in the McCarran control tower reported a 
thunderstorm 4 to 6 km wide, about 
12 km south of the airport (Figure 1). A 
single, narrow rain shaft was observed to 
be reaching the ground at the Sky 
Harbor-Henderson Airport, raising a dust 
cloud that was moving fast enough to 
permit the motion to be perceived. Upon 
noticing the dust cloud, the controllers 
immediately issued a wind advisory for 
McCarran International Airport, switched 
the active runway, and began rerouting 
air traffic. At this time, a strong 
microburst struck the Sky Harbor Airport 
(Figure 1), destroying numerous aircraft 
in the process. Within a couple of 
minutes, the rain shaft and dust cloud 
were observed by the controllers to 
dissipate. Consequently, the controllers 
reopened runway 19 and cancelled the 
wind advisory for McCarran International 
Airport. 

The thunderstorm continued to approach 
McCarran International Airport from the 
south. The National Weather Service 
observer reported thunder, with a light 
rain shower, beginning at 0049 UTC. 
Southeast winds had increased and were 
10 m sec·1 gusting to 22 m sec·1 (Appendix 
A). 

Cloud-to-ground (CG) lightning had also 
begun to increase in the thunderstorm 
cluster from one CG flash every four to . 
five minutes to about one per minute by 
0050 UTC. In the ensuing eight minutes, 
CG flash frequency increased to three per 
minute and peaked at six flashes per 
minute within the cluster at 0101 UTC 
(Appendix B). 

At approXimately 0100 UTC, the control 
tower observer reported the rapid 
formation and northward movement of a 
dust cloud just to the south of the active 
runway 19. A commercial airliner was in 
the process of taking off and reported 
extreme turbulence flying through the 
cloud. It was at this time the Low-Level 
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Windshear Alert System (LL WAS) sensor 
at the end of runway 19 activated an 
alarm in the control tower (Figure 30). 

The dust cloud moved rapidly toward the 
control tower arriving at approximately 
0103 UTC. Heavy rain and zero visibility 
were reported from the tower within 
seconds of the arrival of the wind and 
dust. FAA wind equipment, located at 
mid-field, registered a wind gust to 46 m 
sec·1 from the south-southeast. Tower 
personnel reported pronounced swaying of 
the tower due to the strong wind. 
Reliable eyewitnesses near the airport 
observed the "boiling" sand cloud near the 
ground as it moved through the airport. 

NWS wind equipment, collocated with 
FAA mid-field equipment, registered a 
gust to 40 m sec·1 before losing power at 
approXimately 0105 UTC. A lightning 
bolt struck near the back-up power 
generator, knocking out all power and 
telephones to the WSO at the Hughes Air 
Terminal on the west side of the airport 
(Figure 30). 

At the height of the event, tower 
personnel observed the wind direction 
from the LL WAS equipment around the 
airport. The wind pattern at that time 
(Figure 31) indicated the characteristic 
footprint of a microburst. 

At approXimately 0107 UTC, wind gusts 
decreased to about 26 m sec·1

, and 
abruptly switched to the north. After 
another two to three minutes, winds 
diminished to about 2 m sec·1

, and 
switched to southerly again. The entire 
episode lasted no more than 10 minutes. 
Rainfall during the brief event was quite 
heavy for the desert, totaling .41 inches. 

The temperature dropped dramatically 
between 0050 UTC and 0106 UTC from 
31.5oC to 19.5°C. The maximum 
temperature at the airport was 38.0 o C 
prior to the arrival of the thunderstorm 
activity. Utilizing the Fawbush and Miller 



(1967) graphical technique for "wet" 
microbursts, results in a forecast peak 
gust of 39.6 m sec·1 ±3 m sec·1

• Utilizing 
Randerson's technique (1982) developed 
for estimating gusts in desert 
thunderstorms yields a peak gust of 25 m 
sec·1 ±6 m sec·1• 

A barograph trace (Figure 32) was also 
available during the episode and showed 
a very strong pressure jump of about 0.20 
inches (6.7 mb) associated with the 
microburst. Employing Bernoulli's 
equation, a maximum wind estimate of 
33.1 m sec·1 is obtained due to the 
negative buoyancy in the downdraft (for 
an explanation ofBernoulli's equation, see 
Appendix C). Unfortunately, due to the 
coarse time resolution on the graph, it is 
impossible to know exactly when the peak 
pressure occurred. 

C. Damage Report 

Reports from the Sky Harbor Airport 
revealed that numerous aircraft were 
damaged in the microburst. However, 
ground reports between the two airports 
show no evidence of damage or severe 
winds (Figure 1). 

The second microburst was also fairly 
limited in areal extent, extending from 
near the south end of runway 19 along 
Sunset Road to just northeast of the 
airport on Maryland Parkway (Figure 30). 
A commercial pilot who lives just to the 
southwest of the airport (Figure 33) 
observed the entire episode and reported 
only a sprinkle of rain with Winds under 
5 m sec·1

• This report is similar to the 
one from an airport employee who 
witnessed the event from approximately 7 
km south of the McCarran International 
Airport (Figure 33). 

The micro burst· did considerable damage 
to several aircraft hangars on the west 
side of the McCarran International 
Airport. Numerous small aircraft were 
either damaged or destroyed by the 
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winds. The microburst · apparently 
dissipated just to the northeast of the 
airport. However, this was not before 
kri.ocking down 12 power. poles (Figure 30) 
along Maryland Parkway. Power service 
was disrupted at the airport, a few 
businesses, and numerous residential 
customers due to the downed power lines. 

Approximately 14 million dollars in 
damages resulted from these two 
microbursts. This estimat~ includes 
severe damage to several hangars; 80 
aircraft (that were reportedly tied down), 
and power lines. Fortunately, there were 
no reported deaths or injuries. 

VI. SUMMARY 

Atmospheric stability and moisture 
content over southern Nevada on this day 
(Figures 11 and 22) were very similar to 
that observed near Dallas-Fort Worth 
(Figure 7) on the day a severe microburst 
occurred there. However, at the present 
time, there is no simple index to 
accurately forecast the maximum wind. 
gust in a microburst from a sounding. 
The indices require a forecast of the 
storm environment, e.g., surface potential 
temperature, in order to be of much us.e. 
Alert, accurate, and timely observations 
remain the most vital tool in .forecasting 
and nowcasting of microburst events. 

Suggestive of microburst potential may 
have been the strong moisture flux 
divergence at 850 mb across southern 
Nevada. This was coupled with the 
moisture flux convergence band at 500 mb 
across southern Nevada. Further study 
will be required to determine the viability 
of · these as indicators of microburst 
potential. 

Unfortunately, there is no evidence to 
establish that the thunderstorm which 
produced the microbursts in Las Vegas 
manifested any meteorologically significant 
radar signatures; e.g., an intense 



reflectivity return, a hail spike, or an 
extraordinary radar top. The WSO Las 
Vegas WSR-74C is a local radar, and 
therefore, was not manned at the time of 
the event. The network radar watch 
(WSO Palmdale) responsible for the Las 
Vegas area (Figure 34) is not suited for 
monitoring short-fused, small-scale 
meteorological events such as a 
microburst. The sensitivity-time control 
(STC) curves, and the wide vertical beam 
width (6 to 7 degrees) of FAA radars are 
inadequate for short-range observations. 
In any event, neither radar archives data 
with sufficient frequency to be of use in 
the post-storm reconstruction of this 
event. 

As stated previously, investigators have 
pointed out microbursts spawned by the 
"dry extreme" and the "intermediate" 
environment are often the products of 
parent clouds that are not severe. The 
thunderstorm that produced the 
microburst resulting in a commercial 
airliner disaster at the Dallas-Fort Worth 
Airport was observed as a small shower 
(approximately 30 dBZ) with a radar top 
of only 7 km (Fujita, 1986), minutes 
before the event. Rapid intensification to 
approximately 45 dBZ (a VIP level 4) 
occurred only four minutes before the 
microburst (Caracena et al. 1986). 

Recent work by Williams and Orville 
(1988) and Beuchler et al. (1988), point 
to a relationship between intracloud (IC) 
lightning and microbursts in the "extreme 
wet" environment. IC activity maximizes 
four to 10 minutes prior to the time of 
maximum outflow at the surface due to 
charge separation processes occurring in 
the thunderstorm updraft. It is unknown 
if this technique would be useful in either 
the "dry extreme" or the "intermediate" 
environments. A potentially, inexpensive 
procedure to test this principle would be 
to combine output from an optical 
detector (Scott, 1989) with real-time CG 
lightning flash data. A simple algorithm 
could be programmed into a personal 
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computer that would subtract the CG 
lightning data set from the full lightning 
spectrum collected by the optical device. 
The product would be an estimate of the 
real-time IC lightning frequency in the 
vicinity of the optical detector. 

There is sufficient knowledge of the 
microburst in dry and intermediate 
environments to issue an "area-wide 
microburst alert" based on vertical 
moisture and temperature profiles (Wilson 
et al. 1984 and Caracena et al. 1989). 
The microburst alerts would heighten the 
level of awareness in the aviation 
community, both FAA and pilots. 

Numerous authors have cited the 
tendency for microbursts to occur in 
families. Wilson et al. (1984) found in a 

. study of the Denver Airport area that in 
71 microbursts examined, 70 percent 
occurred on days when three or more 
were observed on the same day. The 
lesson is that when one microburst is 
observed, vigilance levels for other 
occurrences should be increased. Thus, 
upon the occurrence of a microburst 
event, an "area-wide microburst alert" 
could be upgraded to an "area-specific 
warning". 

VII. RECOMMENDATIONS 

As Smith (1986) asserted, classify 
microbursts as an observable phenomena. 
Visual identification of microbursts may 
be the final line of defense in avoiding a 
microburst-related accident or disaster. 

Further investigation of a cost­
effective, "total lightning rate" detector is 
vital. Unknown is the effectiveness of the 
IC lightning rate observation in the 
western states as a microburst precursor. 

More emphasis should be placed on 
microburst identification and forecasting 
techniques in both FAA and NWS 
training courses. 
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APPENDIX C. 

The generalized form of the equation for steady, nonviscous, incompressible fluid flow 
(Lamb, 1945) can be written as: 

(1) J Dp/P + o + ~v = constant 

where, 

p = pressure 
P = density 
0 = velocity potential 
v = velocity. 

This equation, called Bernoulli's equation, shows that the pressure varies inversely to the 
velocity of the fluid along any one streaniline. 

Bernoulli's equation can be simplified for application in a microburst (Fujita, 1985) as: 

(2) p = %PV 

where, 

p = static pressure change 
P = density 
v = velocity. 

This equation (Figure 34) expresses the measured pressure change at any point a's a simple 
function of the wind speed. · 

The total pressure, a sum of the static and velocity pressure, remains constant during a 
frictionless outflow from the microburst (Figure 34). Barometers measure static pressure, 
which varies as a function of wind velocity. 

For the event at McCarran International Airport on August 8, 1989, the measured static 
pressure change at the barograph was approximately 6.7 mb. Using equation (2), with a 
range of densities appropriate for the ambient temperature and elevation, the maximum 
wind speed expected would be about 33 m sec·1

• 
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Table 1 

Micro burst 

Macro burst/ 
Gust Front 

Temporal and Spatial Scales of the Microburst 
and the Gust Front/Macroburst 

Dimension 

4 km or less 

Greater than 
4 km 

Spatial Scale 

Misoscale 

Mesoscale 

13 

Temporal Scale 

10 minutes or less 

5 minutes to 2 hours 
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FIGURE 2 
FLIGHT PATH AND INDICATED AIRSPEED OF PAA 759 

AT THE NEW ORLEANS AIRPORT ON 9 JULY 1982. 
ACCORDING TO THE AUTHOR'S RECONSTRUCTION, 

THE AIRCRAFT REACHED 163FT. (50 m) AGL. 
THEREAFTER, IT DESCENDED TO 52 FT. (16 m), CONTACTING 

A TREE ON THE EAST SIDE OF WILLIAMS BLVD. 
(FUJITA, 1985) 
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Midair Microburst Surface Microburst 

FIGURE 3 
THREE STAGES OF A DESCENDING MICROBURST. 

A MID-AIR MICROBURST MAY OR MAY NOT DESCEND 
TO THE SURFACE. IF IT DOES, THE OUTBURST WINDS 

DEVELOP IMMEDIATELY AFTER ITS TOUCHDOWN. 
(FUJITA, 1985) 
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Outflow Microburst 
..... 

FIGURE 4 
OUTFLOW MICROBURSTS ARE THE MOST 

COMMONLY OBSERVED TYPE OF MICROBURSTS 
(FUJITA, 1985) 
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FIGURE 5 
CROSS SECTION OF A CONCEPTUAL VORTEX RING 

MODEL OF A MICROBURST (CARACENA, 1982; 1987). 
THE SHADED PORT,ION IS THE FRICTION BOUNDARY 

LAYER THAT CONTAINS VORTICITY OPPOSITE TO 
THAT OF THE DESCENDING RING. 
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FIGURE 6 
A COMPOSITE OF FIVE AFTERNOON (0000 UTC} 

SOUNDINGS BY BROWN et al. (1982} FOR CONVECTIVE 
EVENTS THAT PRODUCED DAMAGING SURFACE WINDS 

ASSOCIATED WITH HIGH-BASED CUMULONIMBI 
IN THE FRONT RANGE AREA OF COLORADO 
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·Temperature (°C) 

FIGURE 7 
RECONSTRUCTED SOUNDING FOR DALLAS-FORT WORTH 

INTERNATIONAL AIRPORT FOR A TIME WHEN A 
MICROBURST-RELATED ACCIDENT HAPPENED 

(CARACENA et al, 1986) 
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FIGURE 8 
500-mb DATA PLT WITH CONTOUR 

ANALYSIS VALID AT 1200 UTC 
AUGUST 8, 1989 
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FIGURE 9 
500-mb CONTOURED VORTICITY 

ANALYSIS VALID AT 1200 UTC 
(THE SOLID LINES ARE HEIGHT CONTOURS; 

THE DASHED LINES REPRESENT VORTICITY ISOPLETHS) 
AUGUST 8, 1989 
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FIGURE 10 
500-mb WIND FIELD ANALYSIS VALID AT 1200 UTC 

AUGUST 8, 1989 
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FIGURE 11 
ORA SOUNDING VALID AT 1200 UTC 

AUGUST 8, 1989 
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FIGURE 12 
ANALYSIS OF THE LIFT INDEX (TOP NUMBER) AND 

K-INDEX (BOTTOM NUMBER) VALID AT 1200 UTC 
AUGUST 8, 1989 
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FIGURE 13 
ANALYSIS OF THE LAYER STABILITY VALID AT 1200 UTC 

AUGUST 8, 1989 
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FIGURE 14 
ENHANCED IR SATELLITE IMAGERY VALID AT 1200 UTC 

AUGUST 8, 1989 
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FIGURE 15 
ANALYSIS OF THE CG LIGHTNING DATA VALID AT 1215 UTC 

. AUGUST 8, 1989 
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FIGURE 16 
IR SATELLITE IMAGERY VALID AT 0331 UTC 

AUGUST 8, 1989 
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FIGURE 17 
IR SATELLITE IMAGERY VALID AT 0431 UTC 

AUGUST 8, 1989 
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FIGURE 18 
IR SATELLITE IMAGERY VALID AT 0531 UTC 

AUGUST 8, 1989 
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FIGURE 19 
VISIBLE SATELLITE IMAGERY VALID AT 1731 UTC 

AUGUST 8, 1989 
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FIGURE 20 
ENHANCED VISIBLE SATELLITE IMAGERY VALID AT 1931 UTC 

AUGUST 8, 1989 
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FIGURE 21 
ENHANCED VISIBLE SAT IMAGERY VALID AT 2331 UTC 

AUGUST 8, 1989 
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FIGURE 22 
ORA SOUNDING VALID AT 0000 UTC 

AUGUST 9, 1989 
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FIGURE 24 
500-mb CONTOUR ANALYSIS AND 

DATA PLOT VALID AT 0000 UTC 
AUGUST 9, 1989 
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FIGURE 25 
500-mb WIND FIELD ANALYSIS VALID AT 0000 UTC 

AUGUST 9, 1989 
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FIGURE 26 
850-mb MOISTURE FLUX CONVERGENCE 

ANALYSIS VALID AT 0000 UTC 
AUGUST 9, 1989 
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1 
500 Moist Conu(g/ks/hr*10) 

.FIGURE 27 
500-mb MOISTURE FLUX CONVERGENCE 

ANALYSIS VALID AT 0000 UTC 
AUGUST 9, 1989 
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FIGURE 28 
ENHANCED IR SATELLITE IMAGERY VALID AT 0031 UTC 

AUGUST 9, 1989 
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FIGURE 29 

ENHANCED IR SATELLITE IMAGERY VALID AT 0431 UTC 
AUGUST 9, 1989 
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BERNOULLI'S THEOREM INDICATING THAT THE TOTAL 
PRESSURE, A SUM OF THE STATIC PRESSURE AND 

THE VELOCITY PRESSURE OR THE DYNAMIC PRESSURE, 
REMAINS CONSTANT DURING A FRICTIONLESS 

'OUTFLOW FROM THE CENTER OF A MICROBURST. 
(FUJITA, 1985) 
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