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Convective and Rotational Parameters Associated With 
Three Tornado Episodes in Northern and Central California 

John P. Monteverdi 

Department of Geosciences, San Francisco State University, San Francisco, California 

John Quadros 

National Weather Service Forecast Office, San Francisco, California 

ABSTRACT 

An overview of the synoptic and subsynoptic controls on three tornado episodes 
(seven tornadoes) in northern and central California during December 1992 is 
presented and compared to the "prototype" documented for the 24 September 1986 
mesocyclone-induced F2 event in the Sacramento Valley. Convective and rotational 
parameters calculated interactively on the SHARP Workstation verified anecdotal 
evidence that two of the three December episodes were mesocyclone-induced. The 
study indicates that careful consideration of subsynoptic analyses and buoyancy and 
shear parameters can indicate a mesoscale focus for supercellular development in 
California "cold sector" thunderstorm environments. 

I. INTRODUCTION 

Twelve verified tornado events occurred in 
northern and central California during December 
1992 (personal communication, Mr. Jack Hales, 
Lead Forecaster, National Severe Storms 
Forecast Center (NSSFC)). National Weather 
Service (NWS) field damage surveys, undertaken 
for the tornadoes of 2 December in the Santa 
Rosa area, of 6 December in the Monterey area, 
and of 17 December in the Oroville-Marysville 
areas, indicated that each event was characterized 
by multiple touchdowns of F1 (moderate) 
tornadoes (Table 1). Other reports of funnel 
clouds, large hail, and unconfirmed tornadoes or 
waterspouts also occurred on these days. The 
locations of these and other associated severe 
weather events discussed in the text are shown in 
Fig. 1. 

Most California tornadoes occur in a cold sector 
environment which, until recently , had been 

1 

thought to be characterized only by non-rotating 
thunderstorms (see, e.g., Cooley, 1978 and 
Halvorson, 1971). Hales (1985) first suggested 
that the interaction of topographic factors in the 
Los Angeles Basin with flow patterns in certain 
cold sector weather types might create an 
environment favorable for supercellular 
convection. Braun and Monteverdi (1991) 
documented a mesocyclone-induced F2 tornado 
in the Sacramento Valley which occurred in a 
cold sector environment in which a favorable 
shear proftle was created by topographic 
channelling of the low-level flow. 

It is clear that the foci for the "typical" cold 
sector funnel cloud and very weak (FO) tornado 
events may be difficult to isolate operationally. 
It is equally clear that many , perhaps most , of 
the stronger (F 1 and F2) events in California are 
mesocyclone-induced and associated with 
synoptic and subsynoptic focusing mechanisms, 
which may be resolved in an operational setting . 
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Schematic diagram showing location of 
features for synoptic "type" often 
associated with intense "cold sector" 
thunderstonns in California (after 
Monteverdi et al., 1988). 
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Location of 
Bogus 

_ ~o~ndlng 
Redding 

Santa Rosa 
Monterey 
Marysville 

Table 2. 

Date 
of 

Tornado - -· --
9/24/86 
12/2/92 
12/6/92 

12/17/92 

Location 
of 

Tornado 

Vlna 

Sebastopol 1 
Sebastopol 2 

Windsor 
Carmel 

Monterey 
Oroville 

Lorna Rica 

Table 1. 

Date Tornado Path Other Uncon-

of Intensity Length firmed Tornado, 

Tornado (miles) Funnel or 
Waterspout 

In Area 

9/24/86 F2 15 2 Tornadoes, 
Many Funnel 

12/2/92 F1 7.5 Wall cloud 

12/2/92 F1 3 None 

12/2/92 F1 1 Wall cloud 

12/6/92 F1 7 Waterspout 
Funnel clouds 

12/6/92 F1 1 None 

12/17/92 F1 4 Funnel Clouds 
FO Tornado OAK 

12/17/92 F1 5 Funnel Clouds 

Summary of severe weather reports associated with 
tornado cases discussed In text. 

Hall and/or Photo 
Wind or 

Reports Obser-
vatlon o 

1---- _To~~~~ 
Golf ball, Yes 
60 mph 
1/2" hall Yes 

None No 
None No 
None Yes 
None 
None No 

Golf ball No 
Yes 
Yes 

(Sources: USDC Storm Data; John Quadros, Warning Preparedness Meteorologist, 
WSFO, San Francisco; Chris Fontana, WSO, Redding) 

Location Tornado Meso- 500 mb 700mb B+ Positive Shear Storm Relative Energy 
of Intensity cyclone Ll (C) Ll (C) (J/kg) (0·2 km) Helicity Helicity 

Tornado(es) Induced? _t~ 1_0-~ _s-1) (m/s)2 Index - ---·-···-·---- -· -----· ·- -·· -- -- - - - -- --·--
Vina, Chico F2 Yes -3 -5 1806 9 .7 342 3.2 

Sebastopol, Windsor F1 ,F1 ,F1 Yes · 2 · 3 546 9 .4 284 0.98 
Carmel, Monterey F1 ,F1 No . 1 -3 446 8 .6 254 0.6 

Oroville, Lorna Rica F1 ,F1 Yes 3 -3 .5 552 12.5 454 1 .17 

Convective and Rotational Parameters Obtained from Analyses of Bogus Soundings for Four Tornado 
Occurrences In North-Central California 

Bulk 
Richard-

son Number -- ·---
15 
7 
5 
3 



The same general techniques in use by severe 
weather forecasters in other parts of the country 
may be utilized in California to establish the 
threat of strong to severe thunderstorms and 
tornadoes, and to determine the factors which 
would localize the threat subsynoptically. 

Supercell thunderstorms have been shown to be 
associated with the majority of moderate, strong, 
and severe tornado events in the United States 
(Davies-Jones, 1986 and many others). Many 
studies have shown that the synoptic and 
mesoscale factors creating a favorable buoyancy 
and shear environment for supercellular 
convection can be diagnosed operationally 
(Doswell , 1985; Doswell , 1987; 1 ohns and 
Doswell, 1992; and many others). The key 
element in anticipation of such tornado-producing 
thunderstorms is forecaster awareness of the role 
of shear in inducing storm rotation and of the 
potential for certain weather patterns to be 
associated with favorable buoyancy and shear 
parameters. The recent spate of tornadoes in 
California underscores that tornado forecasting is 
also an important part of the operational problem 
in certain California weather patterns. 

A previous report (Monteverdi, 1993) described 
the operational usefulness of the Skew 
T/Hodograph Analysis and Research Programs 
(SHARP) Workstation {Hart and Korotky, 1991) 
in assessing the thermodynamic and wind shear 
conditions in the Sacramento Valley conducive to 
supercellular-type convection for the 17 
December 1992 event in the Oroville area. The 
study indicated that a focus for the tornadic 
activity could have been judged by forecasters: 
(i) alert to the severe weather potential of the 
synoptic pattern on that day; and , (ii) able to 
evaluate information available from interactive 
sounding and hodograph analyses performed with 
the SHARP Workstation program. 

The purpose for this report is to provide general 
documentation for those December tornado 
events in north-central California which occurred 
in a region best represented by the Oakland 
(OAK) radiosonde site. Convective and 
rotational parameters calculated for the 
December events will be compared to those 
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summarized for the 24 September 1986 F2-
tornado-producing thunderstorm (Braun and 
Monteverdi, 1991) in the Sacramento Valley. 
Finally, a brief discussion of the subsynoptic or 
local factors which focused the threat will be 
discussed for each case. 

II. NORTHERN AND CENTRAL 
CALIFORNIA TORNADO 
"PROTOTYPE" 

Two "weather types" associated with "cold 
sector " tornadoes in Cal ifornia have been 
documented. Reed and Blier (1986) and Hales 
( 1985) have discussed cases in which tornadoes 
in central and southern Cal ifornia occurred in 
association with cutoff mid- and upper­
tropospheric troughs. Northern California 
tornadoes can occur in similar patterns, but most 
frequently occur in progressive situations similar 
that shown schematically in Fig. 2. 

In a typical sequence, a moderate to st rong 
surface disturbance passes through northern and 
central California. This disturbance is typically 
associated with a mid- and upper-tropospheric 
short-wave trough moving southeastward along 
the upstream side of a long-wave trough. The 
short-wave trough is often negatively-tilted and 
associated with moderate to strong mid­
tropospheric cyclonic vorticity advection (CV A) 
and strong mid-tropospheric cold advection. As 
pointed out by Doswell ( 1987), mid-tropospheric 
CV A (often termed "dynamics") diagnoses 
upper-tropospheric divergence and an upward 
vertical motion field which encourages 
convection. Such synoptic-scale lifting of a layer 
destablizes the atmosphere and changes 
environmental lapse rates such that the Level of 
Free Convection (LFC) is lowered, effectively 
increasing the positive buoyancy of lifted parcels. 

It is important to remember, however, that 
differential vorticity advection approximated by 
CV A patterns comprises only a portion of the 
quasi-geostrophic forci ng for vertical motions. 
The shape and sign of the temperature advection 
field also contributes to vertical motion. As a 
firs t approximation, operational forecasters can 
assess the combined effects of both terms by 



exanumng CV A by the thermal wind as 
determined by an overlay of the 700 mb vorticity 
field on the 1000-500 mb thickness pattern (to 
determine the sign and relative magnitude of the 
vertical velocity at the 700 mb level) . More 
accurate assessment of the quasi-geostrophic 
forcing for vertical motion can be obtained by 
exammmg the Q-vector divergence field , as 
computed and displayed by the PCGRIDS 
(Petersen, 1992) or by the "UA" programs 
(Foster, 1988) resident on PC-workstations at 
most Weather Service Forecast Offices 
(WSFOs). 

California operational forecasters know that the 
pattern depicted in Fig. 2 is often associated with 
moderate to strong cold advection in the lower 
and middle troposphere. The cold advection 
near the surface is mitigated by sensible heating 
of southeastward moving air streams by the 
Pacific and by diurnal heating over the continent. 
The net effect of these processes is to destabilize 
the air mass over California in the lowest two­
thirds of the troposphere. Because of this, the 
700 mb Lifted Index (LI) is a better "indicator" 
of buoyancy than the 500 mb LI. In addition, 
cold sector thunderstorms are often associated 
with relatively low tropopauses and equilibrium 
levels even though the lower atmosphere may be 
quite unstable. The very strong mid-tropospheric 
cooling (Fig. 3), which occurred in the hours 
preceding the Vina tornado (Braun and 
Monteverdi , 1991), is representative of the 
marked destabilization which occurs in these 
patterns. 

Another important feature common to many of 
the recent California tornado and funnel cloud 
episodes (e.g., Monteverdi et al. , 1988; Braun 
and Monteverdi, 1991; and Monteverdi, 1993) is 
the presence of a jet streak on the southwestern 
periphery of the advancing short-wave trough. 
The upward mid-tropospheric vertical motion 
found east of synoptic-scale troughs tends to be 
augmented when the divergent front left quadrant 
of an advancing upper-tropospheric jet streak 
approaches and passes to the east of the trough 
axis (as documented by Uccellini and Kocin, 
1988; Meier, 1993; and others) . Rapid 
destabilization is often evident in those portions 
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of California which lay north of the jet axis and 
east of the main mid-tropospheric trough axis in 
patterns similar to that shown in Fig. 2 . 

Tornadic convection occurs most often in the 
"cold" air north or northwest of the main cold 
front and, occasionally, along the cold front 
itself. This cold air is often marked by "open 
cellular" cumulus on satellite images in the 
Pacific before making landfall. Recent case 
studies (Braun and Monteverdi, 1991 ; and 
Monteverdi, 1993) have shown that post-frontal 
mesoscale troughs, or low pressure areas , often 
develop in the Central Valley of California 
behind the surface cold front under the area of 
synoptically-forced vertical motion associated 
with the main mid- and upper-tropospheric 
trough . The eastern portions of such surface 
features are characterized by southerly or 
southeasterly upvalley flow and can be a focus 
for significant moisture flux convergence. It is 
not certain that jet streak-induced circulations 
have a role in the production of such surface 
troughs. However, the intersection of the left 
front quadrant of the jet streak with the surface 
trough line was the site for thunderstorm 
initiation in the 1986 F2 Vina Tornado case 
(Braun and Monteverdi, 1991). 

The prestorm sounding (Fig. 4a) and hodograph 
(Fig. 4b) for the mesocyclone-induced tornado of 
24 September 1986 at Vina can be considered as 
a "prototype" sounding and hodograph for the 
purposes of this study. The sounding was 
constructed on the SHARP Workstation by 
insertion of the Redding (RDD) surface 
temperature and wind information into the OAK 
0000 UTC [approximate time of thunderstorm 
initiation as explained in Braun and Monteverdi 
( 1991) radiosonde data and by assuming the wind 
veered smoothly between the surface and the top 
of the coastal mountains at 1500 m (5000 ft)]. 

Important buoyancy and rotational parameters for 
the sounding/hodograph (Figs. 4a and 4b) are 
summarized in Table 2. Similar information for 
the December 1992 events considered in this 
study is also provided and will be discussed in 
this Technical Memorandum. The reader is 
referred to Weisman and Klemp ( 1982) for a 
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Figure 3 Layer temperature change (OC) at RDD 
for the 12 hours ending 0000 UTC 25 
September 1986. 
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(a) Bogus RDD sounding, 0000 UTC 
24 September 1986. Dashed line 
shows surface lifted parcel. 
Surface conditions indicated by 
arrow. 
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indicates true storm motion as 
determined from SAC weather 
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discussion of the Bulk Richardson Number 
(BRN), Davies-Jones et al . ( 1990) for an 
overview of the significance of the storm-relative 
heliciry (s-r helicity) in the development of 
thunderstorm rotation, Johns et al . (1990) for 
discussion of the relationship of the curvature of 
the low-level hodograph to storm rotation 
(positive shear), and Hart and Korotky (1991 ) 
for a brief discussion of the significance of all of 
the var ious parameters (including the 
Energy/Helicity Index -- EHI) displayed in the 
SHARP Workstation output. 

To facilitate interpretation of the Table 2 and the 
soundings and hodographs provided in this study, 
the reader is reminded that supercell 
thunderstorms have been observed for BRNs 
between 2 and 45. However , the forecaster must 
keep in mind that the BRN is a "bulk" measure 
(i.e., based upon absolute value of shear and not 
whether it has the right characteristic). A BRN 
in the correct range of values for rotating 
thunderstorms and associated with favorable s-r 
helicities is a necessary, but not sufficient , 
condition for supercell development. Davies­
Jones et al . (1990) advise that 0-3 km s-r 
helicities approaching 150 m2 s·2 support 
mesocyclone development, 151-299 m2 s·2 

support weak tornadoes, 300-449 m2 s·2 support 
strong tornadoes, and greater than 450 m2 s·2 

support violent tornadoes. In the case of the 
information for the Vina tornado given in Table 
2 , the BRN of 15 combined with the s-r helicity 
of 342 m2 s·2 certainly would suggest a threat for 
strong (F2 or F3) tornadoes. 

Johns et al . (1990) have shown that low-level 
shear, associated with a wind veering and 
increasing with height (positive shear), in the 0-2 
km layer is a parameter most highly correlated 
with tornado occurrence. Particularly their 
results indicate values between 6 x 10·3 s·1 to 25 
x 10·3 s·1 encompassed all of the tornado events. 
Finally, the EHI is another measure of the ratio 
of the buoyancy and shear, using the 0-2 km s-r 
helicity rather than the absolute value of the 
shear (as does the BRN). This index is st ill 
undergoing operat ional test ing, however, values 
of the EHI of around 1 indicate a tendency for 
rotation to support strong (F2 and F3) tornadoes. 

7 

The positive shear value of 9. 7 x 10·3 s·1 for the 
hodograph strongly suggests potential for rotating 
thunderstorms when combined with the buoyancy 
(B+) of 1806 J kg·1

• In fact, Johns et al. (1990) 
show that such shear can be associated with F2 
and F3 tornadoes with a B+ of only around 500 
J kg·1

• The EHI of 3.2 is also suggest ive of high 
risk for strong and violent tornadoes. 

ill. SELECTED TORNADO EVENTS OF 
DECEMBER 1992 IN NORTHERN 
AND CENTRAL CALIFORNIA 

A. General Overview 

The tornado events of 2 December, 6 December, 
and 17 December 1992 in northern and central 
California occurred "synoptically near" the OAK 
radiosonde site. "Synoptically near" is defined 
here as less than half the distance to the 
neighboring Medford and Winnemucca 
radiosonde observations. The authors make the 
assumption that the OAK radiosonde data, 
modified for the low-level temperature and wind 
conditions at the stations nearest the tornado 
occurrences, are representative. 

A summary of the severe weather reports for 
each of the tornadoes observed in the events, and 
for the 1986 Vina tornado, is given in Table 1. 
Although damage survey teams have investigated 
tornado sites in California before, the 
information for the Santa Rosa and Monterey 
tornadoes was obtained from the first two 
intensive ground surveys ever undertaken from 
the San Francisco WSFO (personal 
communication, Mr. Roger Williams, Deputy 
Meteorologist in Charge , WSFO , San 
Francisco). The Oroville tornado was 
investigated by a team from the Redding Weather 
Service Office (WSO) and the Lorna Rica (near 
Marysville--MYV) tornado by a team from the 
Sacramento WSO. 

The authors believe that heightened awareness to 
the risk of severe weather in California on the 
part of the WSFOs and WSOs will lead to more 
complete damage surveys. For example , it is 
interesting to note that NSSFC data for the 
period 1950-1988 indicate the mean path length 
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Figure 5 Photograph of first Sebastopol tornado 
taken from Santa Rosa, approximately 
8 km away, looking west-southwest. 
Note two vortices. Photo courtesy of 
Kent Porter, Santa Rosa Press 
Democrat. 



for tornadoes in Califorrtia during that period to 
have been about 1 mile. The mean path length 
for the tornadoes considered in this study was 
about 4 miles with two verified tracks of 7 miles 
or greater. This suggests that California 
tornadoes have path lengths which are on 
average about the same as those observed in 
other parts of the country. 

Post-event examinations of the data suggest that 
each event was associated with multiple 
touchdowns of tornadoes from the same 
thunderstorm. In addition, although all of the 
tornadoes were classified as Fl , the authors 
concluded that the damage associated with the 
first Sebastopol tornado suggested winds 
approaching (but not quite the same as) those 
observed with F2 tornadoes. These observations 
contradict the conventional wisdom that cold 
sector funnels most often only touch down 
briefly , singly, and are very weak. 

B. Sebastopol/Windsor Tornadoes of 2 
December 1992 

1. Description 

On 2 December 1992, a number of tornadoes 
were reponed in the Santa Rosa (STS) area (see 
Fig. 1 and Table 1). Witness repons of a quasi­
stationary lowered base were verified by a 
number of photographs and video images, which 
substantiated the lowering was a wall-cloud that 
remained stationary for around one-half hour. It 
is interesting to note that other thunderstorms in 
nonhero California moved nonheastward at 20 to 
25 knots at the time of the tornado sightings and 
quasi-stationary wall-cloud observations in the 
Santa Rosa area. 

At approximately 2300 UTC, a large cone­
shaped tornado descended from the lowered 
base. The photograph (Fig. 5) was taken from 
Santa Rosa looking southwest when the forming 
tornado was around 5 miles distant. There were 
no other thunderstorms in the vicinity, and the 
region southwest of the descending tornado was 
in sunlight. 
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The tornado (Fig. 5) was the first of three in the 
area and was documented with a path length of 
7.5 miles. As it moved slowly nonh­
nonheastward, it dissipated to be replaced by a 
second tornado with a track slight ly east of the 
first. This tornado had a path length of 3 miles 
before dissipating. At this time, video images of 
the wall cloud were captured by television 
cameramen. It slowly moved nonheastward 
towards Windsor, at which time the third and 
final tornado in this sequence descended. 

Damage surveys and repons indicated that the 
parent thunderstorm moved nonheastward at 9 
knots while other thunderstorms in the region 
were moving 20 to 25 knots. This slow 
movement is consistent with the quasi-stationary 
and quasi-steady nature of supercell 
thunderstorms. 

ii. Synoptic and Subsynoptic-scale Controls 

The 500mb height and absolute vonicity patterns 
for 0000 UTC 3 December (Fig. 6) show that 
the mid-tropospheric trough affecting nonhero 
California was closed, suggesting that the pattern 
was similar to that documented by Hales ( 1985) 
for central and southern California. The history 
of the shon-wave trough (not given) indicated 
that it had progressed around the nonh side of 
the long-wave ridge in the Gulf of Alaska and 
approached California from the nonhwest , as 
also occurred for the prototype discussed above. 
At the time of Fig. 6, moderate to strong mid­
tropospheric CV A in southwesterly flow 
characterized the middle third of California. 

A series of subsynoptic surface analyses 
indicated that a post-frontal trough had developed 
in the region of California nonhwest of the 
major cold front. A wave had developed on this 
surface trough by 0000 UTC (Fig. 7) with a 
meso-low in the area between Ukiah and STS. 
Unlike the prototype discussed above, winds at 
OAK had not yet veered to the nonhwest , 
undoubtedly because the mid- and upper­
tropospheric shon-wave was located farther off 
the coast in this case. Thus, all of the coastal 
valleys, including those in the San Francisco Bay 
region and the Central Valley, were situated to 
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Figure 6 NGM analysis of 500mb heights 
(dam) and absolute vorticity ( IO-Ss-1) 
for 0000 UTC 3 December 1992. 
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settings for 0000 UTC 3 December 
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Figure 8 Advanced Very High Resolution 
Radiometer (A VHRR) visible image 
for 2225 UTC 2 December 1992. Note 
suggestion of mesoscale vortex in the 
cloud mass (indicated by "T"). First 
tornado occurred under the 
southernmost portion of the vortex. 
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channel low-level flow to a southeasterly 
direction. The meso-low acted as a local focus 
in the vicinity of STS, which at the time of 
Fig. 7 was reporting an east wind. The "T" on 
Fig. 7 gives the approximate position of the 
second tornado at the time of the chart. 

The enhanced Advanced Very High Resolution 
Radiometer (A VHRR) visible satellite image for 
2225 UTC (Fig. 8), about the time of the first 
tornado touchdown, shows numerous showers 
and thundershowers arrayed around the mid- and 
upper-tropospheric circulation center west of 
Point Arena. The initial development in the 
Santa Rosa area was the southern-most in a 
complex of thunderstorms which extended 
northward and then northwestward across Cape 
Mendocino. A mesoscale circulation, possibly 
related to the meso-low near STS, is indicated by 
the tight, comma shaped spiral indicated by the 
letter "T". 

111. Buoyancy and Wind Shear Parameters 

As in the case of the prototype, strong, cold 
advection produced profound changes in the 
sounding from 1200 UTC to 0000 UTC. The 
layer temperature changes in the mid-troposphere 
(Fig. 9) are even greater than those for the 
prototype (Fig. 3). 

The bogus STS sounding (Fig. lOa) was obtained 
on the SHARP Workstation by insertion of the 
2300 UTC STS temperature and wind 
information into the OAK 0000 UTC sounding. 
2300 UTC was chosen because this was the time 
closest to initial tornado development. The 
bogus hodograph (Fig. lOb) was constructed by 
insertion of the surface wind for STS at 2300 
UTC and by assuming that the narrow valley in 
which STS lays would prevent any directional 
shear until the crest at 5000 m (1500 ft). Storm 
motion was determined from tornado track 
information as summarized above. 

The parameters given for the modified sounding 
and hodograph in Table 2 verify ground 
observations of storm rotation. Buoyancy and 
shear were in the correct range for the 
development of supercells and mesocyclone-
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induced tornadoes. The EHI value of slightly 
less than 1 combined with a s-r helicity of 284 J 
kg·' were consistent with the development of 
tornadoes in the F 1 to F2 range. 

C. Monterey Tornadoes of 6 December 1992 

i. Description 

Two Fl tornadoes occurred in the Monterey­
Carmel area between 2300 UTC 6 December and 
0000 UTC 7 December (see Fig. 1 and Table 1). 
Damage consisted mainly of many uprooted trees 
and shingle loss to roofs. There were several 
reports of waterspouts and funnel clouds off the 
Carmel coast. Observations of the Carmel 
tornado suggested that it occurred from the flat 
base of the parent thunderstorm and no 
observations of wall-clouds or lowered bases 
reported. Damage surveys indicated that the 
path length of the Carmel tornado was 7 miles 
and that of the second tornado in Monterey was 
l mile. These surveys also indicated that the 
tornadoes moved along with the thunderstorm 
motion, as observed on SAC weather radar. 

ii. Synoptic and Sub-synoptic Controls 

The 500 mb analysis for 0000 UTC 7 December 
1992 (Fig. 11) shows a negatively-tilted trough 
extended from the Gulf of Alaska southeastward 
over California. The trough was associated with 
strong mid-tropospheric CV A (not shown). The 
axis of the upper-tropospheric jet stream 
intersected the California coast near Vandenberg 
Air Force Base. The mid-tropospheric 
expression of a jet streak is evident by the height 
contour packing on the southern periphery of the 
trough (Fig . 11). 

At the time of the tornado reports, a cold front 
was in the process of advancing through the 
north-central portions of California. A VHRR 
infrared imagery for 2317 UTC (Fig. 12) , about 
45 minutes before the first tornado report , 
indicated that considerable enhancement of the 
frontal cloud band had occurred east of the main 
mid-tropospheric trough axis in the vicinity of 
the left front quadrant of the advancing jet 
streak. Strong thunderstorm development was 
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:igure 9 Layer temperature change (OC) at STS 
for the 12 hours ending 0000 UTC 3 
December 1992. 
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(a) Bogus STS sounding, 0000 liTC 
3 December 1992. Dashed line 
shows surface lifted parcel. 
Surface conditions indicated by 
arrow. 

(b) Bogus STS hodograph. 0000 UTC 
3 December 1992. Arrow 
indicates true stonn motion as 
determined from tornado tracks. 
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Figure 12 A VHRR infrared image for 2317 
UTC 6 December 1992. 
Thunderstorm cells southwest of 
Monterey peninsula produced 
waterspouts and tornadoes about 
45 minutes after image time. 



evident from just east of San Francisco 
southwestward across the coastline near 
Monterey. 

Since there are few observations in the Monterey 
area and the front lay over the data-sparse 
Pacific, subsynoptic analyses could not be used 
to provide insights to the focus for this case. 
However, since the surface winds in the 
Monterey area, the San Francisco Bay region, 
the southern Sacramento Valley, and the northern 
San Joaquin Valley were all southeasterly at this 
time, it appears that no evidence for a mesoscale 
focus would be discerned from subsynoptic 
analyses. In addition, since the funnel clouds 
and waterspouts which preceded the tornadoes 
were observed over the Pacific, west of Carmel, 
it is probable that any such focusing mechanisms 
would have been active west of the coastline and 
away from any observation sites. 

iii. Buoyancy and Wind Shear Parameters 

Mid-tropospheric cold advection and low-level 
diurnal heating produced 12 h temperature 
changes (Fig. 13) in the Monterey area in the 
same sense (but of a smaller magnitude) than 
those observed for the other cases considered. 
The destabilization for this case was not as 
marked as that which occurred for the other 
cases. In fact, the B+ (Table 2) obtained from 
a bogus 0000 UTC MRY sounding (Fig. 14a), 
constructed on the SHARP Workstation, is the 
smallest of the cases discussed in this study. 

The bogus hodograph for MRY (Fig. 14b) was 
constructed by insert ion of the 0000 UTC wind 
observation for MR Y and the true storm motion 
as determined from SAC weather radar. The 0-2 
km positive shear and 0-3 km s-r helicity, as 
est imated from the SHARP Workstation analysis 
of the bogus hodograph, were also somewhat 
smaller than those observed for the other cases 
(Table 2). The curvature of the hodograph 
between the surface and 2000 m was clock."Wise 
and, with the storm motion indicated , produced 
a s-r helicity of 254 m2 s·2, a "rotational 
potential" which can support weak tornadoes, 
according to Davies-Jones et al. (1990). 
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Although the BRN obtained from the sounding 
(Fig. 14a) was in a range which suggested 
developing thunderstorms might have 
supercellular characteristics, the buoyancy and 
shear evident in Table 2 for this case were likely 
too small for mesocyclone development. This is 
substantiated by the EHI of 0.6, by far the 
smallest of such values for the cases considered 
in this study. 

The parameters summarized in Table 2 for this 
case suggest that the potential for cold sector 
funnels and weak tornadoes region-wide was 
high in this case. However, no discernible 
mesoscale or subsynoptic focus was evident 
which would have aided forecasters in localizing 
the threat to the Monterey area. This lack of 
focus is probably consistent with the fact that 
both anecdotal evidence and buoyancy/shear 
parameters indicate that these tornadoes were not 
mesocyclone-induced. 

D. Oroville-Marysv ill e (Lorna Rica) 
Tornadoes of 17 December 1992 

i. Description 

Two tornadoes occurred in the southern 
Sacramento Valley between 2125 and 2330 UTC 
17 December 1992 (see Fig. 1 and Table 1). 
The first tornado passed through the town of 
Oroville at 2125 UTC and produced substantial 
damage (personal communication, Mr. Chris 
Fontana, Meteorologist in Charge, WSO 
Redding) along its path length of 3 /4 mile. A 
previous report (Monteverdi , 1993) described the 
usefulness of the SHARP Workstation in 
providing guidance to forecasters in anticipat ing 
this event. 

The second tornado occurred at 2330 UTC and 
passed through an unpopulated area near Lorna 
Rica, which is a small village around 15 miles 
northeast of Marysvi lle. Videotapes and 
eyewitness reports verified both the presence of 
a wal l-cloud and the subsequent touchdown of 
the tornado outside of Lorna Rica. Other reports 
indicate that the tornado was "cone-shaped" as it 
traversed its approximately 5 mile path length. 
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Analyses of radar and satellite imagery confirm 
that both tornadoes were associated with a 
thunderstorm which moved southeastward 
through the Sacramento Valley. There were 
unconfirmed reports of golf-ball size hail and 
other funnel clouds when the storm was between 
Oroville and Marysville. 

ii. Synoptic and Subsynoptic-scale Controls 

The synoptic pattern which occurred on 17 
December 1992 (Fig. 15) was the most similar 
of the other December 1992 cases to the 
prototype described earlier. CV A associated 
with an advancing jet streak seemed to play an 
important role in diagnosing a vertical motion 
field which enhanced thunderstorm development 
and contributed to destabilization. The jet streak 
was evident (Fig. 15) by the vorticity dipole 
centered at 43°N, 130°W. 

Satellite imagery during the morning of 17 
December showed open cellular cumulus west of 
the coastline in the hours before the initiation of 
convection in the Sacramento Valley, with 
greatest enhancement under the left front 
quadrant of the advancing jet streak. This 
pattern was quite similar to the schematic "type" 
associated with strong to severe convection in 
northern and central California (Fig. 2). 

Figure 16 gives the 2200 UTC 17 December 
subsynoptic analysis for northern and central 
California. Note that upvalley, southerly flow 
was occurring ahead of a subsynoptic scale 
trough located in the southern Sacramento Valley 
even though northwesterly winds characterized 
the low-level flow in the San Francisco Bay 
region. Mesoscale or subsynoptic lee-side 
troughs are common in patterns which closely 
resemble the prototype surface and mid­
tropospheric patterns (Fig. 2), discussed in 
section 2. 

The prestorm moisture flux convergence field 
over California (Fig. 17) was characterized by 
two maxima, one associated with the frontal 
system over central California and another 
associated with the trough line. Maxima of 
moisture flux convergence indicate a mesoscale 
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focus for destabilization and/or wind 
convergence (Doswell , 1985 and many others). 
The tornadic thunderstorm (indicated by the 
letter Ton Figs . 16 and 18) initially developed in 
the northern-most area of surface moisture flux 
convergence ahead of the trough line and north 
of the main front. Moisture flux convergence 
occurring in association with post-frontal troughs 
was also found to be an important feature in the 
prestorm environment with the 24 September 
1986 tornadoes in the Sacramento Valley (Braun 
and Monteverdi, 1991). 

111. Buo yancy and Wind Shear 
Characteristics 

Strong cold advection in the mid- and lower­
troposphere, in association with the trough (Fig. 
15) advancing southeastward, caused pronounced 
destabilization over northern and central 
California. The cooling in the 900-400 mb layer 
was very marked, as is evident in Fig. 19, which 
shows the 12 h layer temperature changes for the 
period from 1200 UTC 17 December and 0000 
UTC 18 December. Figure 19 was obtained by 
substitution of the surface data for MYV into the 
respective OAK soundings. It is interesting to 
note that the development of favorable buoyancy 
for the three mesocyclone-induced tornado cases 
considered in this study was associated with 
similar 12 h layer temperature changes, as is 
evident from a comparison of Figs . 3, 9, and 20. 

The bogus 2200 UTC MYV sounding (Fig. 20a) 
was constructed on the SHARP Workstation. 
The sounding information (Table 2) substantiates 
the fact that weak positive buoyancy 
characterized the lower-troposphere even though 
the 500 mb Lifted Index (LI) indicated negative 
buoyancy at that level. As pointed out in Braun 
and Monteverdi (1991) and Monteverdi (1993), 
the 700 mb LI provides a more accurate 
indicator of instability in cold sector California 
events, particularly during the cool season (-3.5 
in this case). 

The bogus MYV hodograph (Fig. 20b) was 
created from the 1200 UTC OAK hodograph by 
substitution of the 2200 UTC surface wind at 
MYV and by insertion of the true storm motion 
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Figure 18 A VHRR infrared image for 2245 UTC 
17 December 1992. Tomadic 
thunderstorm indicated by letter "T". 
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obtained from SAC weather radar (indicated by 
arrow). The modified hodograph shows the type 
of low-level curvature indicative of high 
rotational potential , verified by the s-r helicity of 
454 m2 s·2. The weak buoyancy of 552 J kg·1 is 
in the correct range to support strong and violent 
tornadoes if the positive shear exceeded 10 x 10·3 

s·1 (Johns et al. , 1990). The positive shear of 13 
x 10·3 s·1 combined with the s-r helicity gives an 
EHI of 1.17, suggesting that storms in the 
southern Sacramento Valley could be associated 
with strong (F2 or F3) tornadoes. 

IV. DISCUSSION AND CONCLUSIONS 

Previous studies (Braun and Monteverdi, 199 1; 
and Monteverdi, 1993) have pointed out that 
shear profiles which support s-r helicities 
favorable for storm rotation can be created or 
augmented locally by most valleys in northern 
and central California. Since both the Coast 
Range and the Sierra Nevada trend northwest-to­
southeast, most ridges and valleys are oriented in 
the "proper " direction to channel low-level 
southwesterly and southerly flow to 
southeasterly. For the cases considered in this 
study, this low-level channelling combined with 
the west-southwest flow in the mid-troposphere, 
created a situation in which moderate to strong 
streamwise vorticity was generated in the low­
level flow. As a result , in all of the cases 
considered in this study, s-r helicities achieved 
values which could support moderate to strong 
tornadoes. 

The southern Sacramento tornado events of 17 
December 1992 occurred in a synoptic and 
subsynoptic setting very similar to that associated 
with the "prototype" 24 September 1986 Vina 
tornado. Of the soundings and hodographs 
considered here, those for 17 December 1992 
(Figs. 20a and 20b) most closely resembled those 
for the Vina tornado (Figs. 4a and 4b). In the 
Vina event (Braun and Monteverdi, 1991), a 
post-frontal subsynoptic trough focused the 
topographically channelled low-level flow . It 
appears that, in the case of the 17 December 
1992 tornadoes, proper phasing of synoptic-scale 
features also supported the development of a 
subsynoptic, leeside trough in the Sacramento 
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Valley which , in turn, augmented the channelled 
flow in the same manner. The s-r helicities for 
these two events were the greatest of those 
calculated for all events considered here and 
actually were in a range which could support 
strong (24 September 1986) and strong to violent 
(17 December 1992) tornadoes (Table 2). 

Strong and violent tornadoes have been observed 
for a wide range of buoyancy and shear ratios 
(Johns et al. , 1990). While moderate buoyancy 
was associated with the Vina event (Table 2), 
only weak instability occurred for the December 
events. This was partially due to the fact that 
although all of the events considered here were 
"cold sector", the Vina tornado occurred in a 
wann season envi ronment characterized by much 
higher temperatures and dew points than those 
that occurred with the December 1992 tornadoes . 
This study substantiates the conclusions of Johns 
et al. ( 1990), and many others, that weak 
instability can be associated with at least 
moderate mesocyclone-induced tornadoes if shear 
values are in favorable ranges. In the case of the 
events considered here, only the Monterey 
tornadoes occurred in an environment in which 
the buoyancy to shear ratios failed to support 
strong thunderstorm rotation. 

Each of the three December events occurred in 
a synoptic pattern which corresponded to one of 
the two already discussed in the literature as 
being associated with cold-sector tornadoes in 
California (Hales, 1985; Braun and Monteverdi, 
1991). The Monterey and southern Sacramento 
Valley tornadoes were associated with a 
progressive mid-tropospheric pattern similar to 
that of the "prototype" discussed earlier in this 
study. The Santa Rosa/Sebastopol tornadoes 
occurred in a similar pattern except that the mid­
tropospheric trough became closed off west of 
the coastline. This apparently kept the greatest 
upper-tropospheric divergence and ascent along 
the coast. 

This study indicates that careful subsynoptic 
analyses and thoughtful consideration of 
buoyancy and shear information, obtained 
interactively on the SHARP Workstation (or any 
similar analysis system) by the forecaster, can 
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indicate a mesoscale or subsynoptic focus for 
those tornado events in California which are 
mesocyclone-induced. On the other hand, 
determination of such a local focus may not be 
possible for thunderstorms which do not have 
superce llular characteristics and those 
supercellular events which are initiated over the 
data-sparse Pacific. 

This study also suggests that buoyancy and shear 
parameters may yield operationally useful 
guidance in distinguishing between the threat for 
funnel clouds, or weak, moderate, and strong 
tornadoes in California cold sector thunderstorm 
events. Research is continuing at San Francisco 
State University (SFSU) to determine buoyancy 
and shear information for all of the tornado and 
funnel cloud events in northern and central 
California since 1950. 
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