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Convective and Rotational Parameters Associated With
Three Tornado Episodes in Northern and Central California

John P. Monteverdi

Department of Geosciences, San Francisco State University, San Francisco, California

John Quadros

National Weather Service Forecast Office, San Francisco, California

ABSTRACT

An overview of the synoptic and subsynoptic controls on three tornado episodes
(seven tornadoes) in northern and central California during December 1992 is
presented and compared to the "prototype” documented for the 24 September 1986
mesocyclone-induced F2 event in the Sacramento Valley. Convective and rotational
parameters calculated interactively on the SHARP Workstation verified anecdotal
evidence that two of the three December episodes were mesocyclone-induced. The
study indicates that careful consideration of subsynoptic analyses and buoyancy and
shear parameters can indicate a mesoscale focus for supercellular development in
California "cold sector” thunderstorm environments.

I. INTRODUCTION

Twelve verified tornado events occurred in
northern and central California during December
1992 (personal communication, Mr. Jack Hales,
Lead Forecaster, National Severe Storms
Forecast Center (NSSFC)). National Weather
Service (NWS) field damage surveys, undertaken
for the tornadoes of 2 December in the Santa
Rosa area, of 6 December in the Monterey area,
and of 17 December in the Oroville-Marysville
areas, indicated that each event was characterized
by multiple touchdowns of F1l (moderate)
tornadoes (Table 1). Other reports of funnel
clouds, large hail, and unconfirmed tornadoes or
waterspouts also occurred on these days. The
locations of these and other associated severe
weather events discussed in the text are shown in
Fig. 1.

Most California tornadoes occur in a cold sector
environment which, until recently, had been

thought to be characterized only by non-rotating
thunderstorms (see, e.g., Cooley, 1978 and
Halvorson, 1971). Hales (1985) first suggested
that the interaction of topographic factors in the
Los Angeles Basin with flow patterns in certain
cold sector weather types might create an
environment favorable for supercellular
convection. Braun and Monteverdi (1991)
documented a mesocyclone-induced F2 tornado
in the Sacramento Valley which occurred in a
cold sector environment in which a favorable
shear profile was created by topographic
channelling of the low-level flow.

It is clear that the foci for the "typical” cold
sector funnel cloud and very weak (F0) tornado
events may be difficult to isolate operationally.
It is equally clear that many, perhaps most, of
the stronger (F1 and F2) events in California are
mesocyclone-induced and associated with
synoptic and subsynoptic focusing mechanisms,
which may be resolved in an operational setting.
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tornadoes discussed in text. map.
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to three tornado episodes.
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Monteverdi et al., 1988).



Location Date Tornado Path Other Uncon- | Hall and/or| Photo
of of Intensity Length | firmed Tornado, Wind or
Tornado Tornado (miles) Funnel or Reports | Obser-
Waterspout vation o
1 ImArea | Tornado|
Vina 9/24/86 F2 15 2 Tornadoes, Golf ball, Yes
Many Funnel 60 mph
Sebastopol 1 12/2/92 F1 7.5 Wall cloud 1/2" halil Yes
Sebastopol 2 12/2/92 F1 3 None None No
Windsor 12/2/82 F1 1 Wall cloud None No
Carmel 12/6/92 F1 i Waterspout None Yes
Funnel clouds None
Monterey 12/6/92 F1 1 None None No
Oroville 12/17/192 F1 4 Funnel Clouds Golf ball No
FO Tornado OAK Yes
Loma Rica 12/17/92 F1 5 Funnel Clouds Yes
Table 1. Summary of severe weather reports associated with
tornado cases discussed in text.
(Sources: USDC Storm Data; John Quadros, Warning Preparedness Meteorologist,
WSFO, San Francisco; Chris Fontana, WSO, Redding)
Location of Date Location Tornado| Meso- |500 mb700 mb B+ | Positive Shear|Storm Relative| Energy Bulk
Bogus of of Intensity| cyclone | LI (C)| LI (C)| (J/kg) (0-2 km) Helicity Helicity Richard-
‘Sounding | Tornado | Tornado(es) |  [Induced? o (X 10-3 s-1) (m/s)2 Index | son Number
Redding | 9/24/86 Vina, Chico F2 Yes | -3 | -5 |1806| 9.7 342 | 32 | 15
Santa Rosa| 12/2/92 | Sebastopol, Windsor [F1,F1,F1| Yes -2 -3 546 9.4 284 0.98 i 4
Monterey | 12/6/92 Carmel, Monterey F1,F1 No -1 -3 446 8.6 254 0.6 5
Marysville | 12/17/92| Oroville, Loma Rica | F1,F1 Yes 3 -3.5 | 552 12.5 454 1.7 3
Table 2.

Convective and Rotational Parameters Obtained from Analyses of Bogus Soundings for Four Tornado
Occurrences in North-Central California




The same general techniques in use by severe
weather forecasters in other parts of the country
may be utilized in California to establish the
threat of strong to severe thunderstorms and
tornadoes, and to determine the factors which
would localize the threat subsynoptically.

Supercell thunderstorms have been shown to be
associated with the majority of moderate, strong,
and severe tornado events in the United States
(Davies-Jones, 1986 and many others). Many
studies have shown that the synoptic and
mesoscale factors creating a favorable buoyancy
and shear environment for supercellular
convection can be diagnosed operationally
(Doswell, 1985; Doswell, 1987; Johns and
Doswell, 1992; and many others). The key
element in anticipation of such tornado-producing
thunderstorms is forecaster awareness of the role
of shear in inducing storm rotation and of the
potential for certain weather patterns to be
associated with favorable buoyancy and shear
parameters. The recent spate of tornadoes in
California underscores that tornado forecasting is
also an important part of the operational problem
in certain California weather patterns.

A previous report (Monteverdi, 1993) described
the operational usefulness of the Skew
T/Hodograph Analysis and Research Programs
(SHARP) Workstation (Hart and Korotky, 1991)
in assessing the thermodynamic and wind shear
conditions in the Sacramento Valley conducive to
supercellular-type convection for the 17
December 1992 event in the Oroville area. The
study indicated that a focus for the tornadic
activity could have been judged by forecasters:
(i) alert to the severe weather potential of the
synoptic pattern on that day; and, (ii) able to
evaluate information available from interactive
sounding and hodograph analyses performed with
the SHARP Workstation program.

The purpose for this report is to provide general
documentation for those December tornado
events in north-central California which occurred
in a region best represented by the Oakland
(OAK) radiosonde site. Convective and
rotational parameters calculated for the
December events will be compared to those

summarized for the 24 September 1986 F2-
tornado-producing thunderstorm (Braun and
Monteverdi, 1991) in the Sacramento Valley.
Finally, a brief discussion of the subsynoptic or
local factors which focused the threat will be
discussed for each case.

II. NORTHERN AND CENTRAL
CALIFORNIA TORNADO
"PROTOTYPE"

Two "weather types" associated with "cold
sector” tornadoes in California have been
documented. Reed and Blier (1986) and Hales
(1985) have discussed cases in which tornadoes
in central and southern California occurred in
association with cutoff mid- and upper-
tropospheric troughs. Northern California
tornadoes can occur in similar patterns, but most
frequently occur in progressive situations similar
that shown schematically in Fig. 2.

In a typical sequence, a moderate to strong
surface disturbance passes through northern and
central California. This disturbance is typically
associated with a mid- and upper-tropospheric
short-wave trough moving southeastward along
the upstream side of a long-wave trough. The
short-wave trough is often negatively-tilted and
associated with moderate to strong mid-
tropospheric cyclonic vorticity advection (CVA)
and strong mid-tropospheric cold advection. As
pointed out by Doswell (1987), mid-tropospheric
CVA (often termed "dynamics") diagnoses
upper-tropospheric divergence and an upward
vertical motion field which encourages
convection. Such synoptic-scale lifting of a layer
destablizes the atmosphere and changes
environmental lapse rates such that the Level of
Free Convection (LFC) is lowered, effectively
increasing the positive buoyancy of lifted parcels.

It is important to remember, however, that
differential vorticity advection approximated by
CVA patterns comprises only a portion of the
quasi-geostrophic forcing for vertical motions.
The shape and sign of the temperature advection
field also contributes to vertical motion. As a
first approximation, operational forecasters can
assess the combined effects of both terms by



examining CVA by the thermal wind as
determined by an overlay of the 700 mb vorticity
field on the 1000-500 mb thickness pattern (to
determine the sign and relative magnitude of the
vertical velocity at the 700 mb level). More
accurate assessment of the quasi-geostrophic
forcing for vertical motion can be obtained by
examining the Q-vector divergence field, as
computed and displayed by the PCGRIDS
(Petersen, 1992) or by the "UA" programs
(Foster, 1988) resident on PC-workstations at
most Weather Service Forecast Offices
(WSFOs).

California operational forecasters know that the
pattern depicted in Fig. 2 is often associated with
moderate to strong cold advection in the lower
and middle troposphere. The cold advection
near the surface is mitigated by sensible heating
of southeastward moving air streams by the
Pacific and by diurnal heating over the continent.
The net effect of these processes is to destabilize
the air mass over California in the lowest two-
thirds of the troposphere. Because of this, the
700 mb Lifted Index (LI) is a better "indicator"
of buoyancy than the 500 mb LI. In addition,
cold sector thunderstorms are often associated
with relatively low tropopauses and equilibrium
levels even though the lower atmosphere may be
quite unstable. The very strong mid-tropospheric
cooling (Fig. 3), which occurred in the hours
preceding the Vina tornado (Braun and
Monteverdi, 1991), is representative of the
marked destabilization which occurs in these
patterns.

Another important feature common to many of
the recent California tornado and funnel cloud
episodes (e.g., Monteverdi et al., 1988; Braun
and Monteverdi, 1991; and Monteverdi, 1993) is
the presence of a jet streak on the southwestern
periphery of the advancing short-wave trough.
The upward mid-tropospheric vertical motion
found east of synoptic-scale troughs tends to be
augmented when the divergent front left quadrant
of an advancing upper-tropospheric jet streak
approaches and passes to the east of the trough
axis (as documented by Uccellini and Kocin,
1988; Meier, 1993; and others). Rapid
destabilization is often evident in those portions

of California which lay north of the jet axis and
east of the main mid-tropospheric trough axis in
patterns similar to that shown in Fig. 2.

Tornadic convection occurs most often in the
"cold" air north or northwest of the main cold
front and, occasionally, along the cold front
itself. This cold air is often marked by "open
cellular" cumulus on satellite images in the
Pacific before making landfall. Recent case
studies (Braun and Monteverdi, 1991; and
Monteverdi, 1993) have shown that post-frontal
mesoscale troughs, or low pressure areas, often
develop in the Central Valley of California
behind the surface cold front under the area of
synoptically-forced vertical motion associated
with the main mid- and upper-tropospheric
trough. The eastern portions of such surface
features are characterized by southerly or
southeasterly upvalley flow and can be a focus
for significant moisture flux convergence. It is
not certain that jet streak-induced circulations
have a role in the production of such surface
troughs. However, the intersection of the left
front quadrant of the jet streak with the surface
trough line was the site for thunderstorm
initiation in the 1986 F2 Vina Tornado case
(Braun and Monteverdi, 1991).

The prestorm sounding (Fig. 4a) and hodograph
(Fig. 4b) for the mesocyclone-induced tornado of
24 September 1986 at Vina can be considered as
a "prototype" sounding and hodograph for the
purposes of this study. The sounding was
constructed on the SHARP Workstation by
insertion of the Redding (RDD) surface
temperature and wind information into the OAK
0000 UTC [approximate time of thunderstorm
initiation as explained in Braun and Monteverdi
(1991) radiosonde data and by assuming the wind
veered smoothly between the surface and the top
of the coastal mountains at 1500 m (5000 ft)].

Important buoyancy and rotational parameters for
the sounding/hodograph (Figs. 4a and 4b) are
summarized in Table 2. Similar information for
the December 1992 events considered in this
study is also provided and will be discussed in
this Technical Memorandum. The reader is
referred to Weisman and Klemp (1982) for a
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discussion of the Bulk Richardson Number
(BRN), Davies-Jones et al. (1990) for an
overview of the significance of the storm-relative
helicity (s-r helicity) in the development of
thunderstorm rotation, Johns et al. (1990) for
discussion of the relationship of the curvature of
the low-level hodograph to storm rotation
(positive shear), and Hart and Korotky (1991)
for a brief discussion of the significance of all of
the various parameters (including the
Energy/Helicity Index -- EHI) displayed in the
SHARP Workstation output.

To facilitate interpretation of the Table 2 and the
soundings and hodographs provided in this study,
the reader is reminded that supercell
thunderstorms have been observed for BRNs
between 2 and 45. However, the forecaster must
keep in mind that the BRN is a "bulk" measure
(i.e., based upon absolute value of shear and not
whether it has the right characteristic). A BRN
in the correct range of values for rotating
thunderstorms and associated with favorable s-r
helicities is a necessary, but not sufficient,
condition for supercell development. Davies-
Jones et al. (1990) advise that 0-3 km s-r
helicities approaching 150 m? s? support
mesocyclone development, 151-299 m’ s?
support weak tornadoes, 300-449 m? s? support
strong tornadoes, and greater than 450 m? s?
support violent tornadoes. In the case of the
information for the Vina tornado given in Table
2, the BRN of 15 combined with the s-r helicity
of 342 m* s? certainly would suggest a threat for
strong (F2 or F3) tornadoes.

Johns et al. (1990) have shown that low-level
shear, associated with a wind veering and
increasing with height (positive shear), in the 0-2
km layer is a parameter most highly correlated
with tornado occurrence.  Particularly their
results indicate values between 6 x 107 s to 25
x 107 "' encompassed all of the tornado events.
Finally, the EHI is another measure of the ratio
of the buoyancy and shear, using the 0-2 km s-r
helicity rather than the absolute value of the
shear (as does the BRN). This index is still
undergoing operational testing, however, values
of the EHI of around 1 indicate a tendency for
rotation to support strong (F2 and F3) tornadoes.

The positive shear value of 9.7 x 107 s™! for the
hodograph strongly suggests potential for rotating
thunderstorms when combined with the buoyancy
(B+) of 1806 J kg'. In fact, Johns et al. (1990)
show that such shear can be associated with F2
and F3 tornadoes with a B+ of only around 500
Jkg'. The EHI of 3.2 is also suggestive of high
risk for strong and violent tornadoes.

III. SELECTED TORNADO EVENTS OF
DECEMBER 1992 IN NORTHERN
AND CENTRAL CALIFORNIA

A. General Overview

The tornado events of 2 December, 6 December,
and 17 December 1992 in northern and central
California occurred "synoptically near" the OAK
radiosonde site. "Synoptically near" is defined
here as less than half the distance to the
neighboring Medford and Winnemucca
radiosonde observations. The authors make the
assumption that the OAK radiosonde data,
modified for the low-level temperature and wind
conditions at the stations nearest the tornado
occurrences, are representative.

A summary of the severe weather reports for
each of the tornadoes observed in the events, and
for the 1986 Vina tornado, is given in Table 1.
Although damage survey teams have investigated
tornado sites in California before, the
information for the Santa Rosa and Monterey
tornadoes was obtained from the first two
intensive ground surveys ever undertaken from
the San Francisco WSFO (personal
communication, Mr. Roger Williams, Deputy
Meteorologist in  Charge, WSFO, San
Francisco). The Oroville tornado was
investigated by a team from the Redding Weather
Service Office (WSO) and the Loma Rica (near
Marysville--MYV) tornado by a team from the
Sacramento WSO.

The authors believe that heightened awareness to
the risk of severe weather in California on the
part of the WSFOs and WSOs will lead to more
complete damage surveys. For example, it is
interesting to note that NSSFC data for the
period 1950-1988 indicate the mean path length



Figure 5

Photograph of first Sebastopol tornado
taken from Santa Rosa, approximately
8 km away, looking west-southwest.
Note two vortices. Photo courtesy of
Kent Porter, Santa Rosa Press
Democrat.



for tornadoes in California during that period to
have been about 1 mile. The mean path length
for the tornadoes considered in this study was
about 4 miles with two verified tracks of 7 miles
or greater. This suggests that California
tornadoes have path lengths which are on
average about the same as those observed in
other parts of the country.

Post-event examinations of the data suggest that
each event was associated with multiple
touchdowns of tornadoes from the same
thunderstorm. In addition, although all of the
tornadoes were classified as F1, the authors
concluded that the damage associated with the
first Sebastopol tornado suggested winds
approaching (but not quite the same as) those
observed with F2 tornadoes. These observations
contradict the conventional wisdom that cold
sector funnels most often only touch down
briefly, singly, and are very weak.

B. Sebastopol/Windsor Tornadoes of 2
December 1992

1. Description

On 2 December 1992, a number of tornadoes
were reported in the Santa Rosa (STS) area (see
Fig. 1 and Table 1). Witness reports of a quasi-
stationary lowered base were verified by a
number of photographs and video images, which
substantiated the lowering was a wall-cloud that
remained stationary for around one-half hour. It
is interesting to note that other thunderstorms in
northern California moved northeastward at 20 to
25 knots at the time of the tornado sightings and
quasi-stationary wall-cloud observations in the
Santa Rosa area.

At approximately 2300 UTC, a large cone-
shaped tornado descended from the lowered
base. The photograph (Fig. 5) was taken from
Santa Rosa looking southwest when the forming
tornado was around 5 miles distant. There were
no other thunderstorms in the vicinity, and the
region southwest of the descending tornado was
in sunlight.

The tornado (Fig. 5) was the first of three in the
area and was documented with a path length of
7.5 miles. As it moved slowly north-
northeastward, it dissipated to be replaced by a
second tornado with a track slightly east of the
first. This tornado had a path length of 3 miles
before dissipating. At this time, video images of
the wall cloud were captured by television
cameramen. It slowly moved northeastward
towards Windsor, at which time the third and
final tornado in this sequence descended.

Damage surveys and reports indicated that the
parent thunderstorm moved northeastward at 9
knots while other thunderstorms in the region
were moving 20 to 25 knots. This slow
movement is consistent with the quasi-stationary
and quasi-steady nature of supercell
thunderstorms.

ii. Synoptic and Subsynoptic-scale Controls

The 500 mb height and absolute vorticity patterns
for 0000 UTC 3 December (Fig. 6) show that
the mid-tropospheric trough affecting northern
California was closed, suggesting that the pattern
was similar to that documented by Hales (1985)
for central and southern California. The history
of the short-wave trough (not given) indicated
that it had progressed around the north side of
the long-wave ridge in the Gulf of Alaska and
approached California from the northwest, as
also occurred for the prototype discussed above.
At the time of Fig. 6, moderate to strong mid-
tropospheric CVA in southwesterly flow
characterized the middle third of California.

A series of subsynoptic surface analyses
indicated that a post-frontal trough had developed
in the region of California northwest of the
major cold front. A wave had developed on this
surface trough by 0000 UTC (Fig. 7) with a
meso-low in the area between Ukiah and STS.
Unlike the prototype discussed above, winds at
OAK had not yet veered to the northwest,
undoubtedly because the mid- and upper-
tropospheric short-wave was located farther off
the coast in this case. Thus, all of the coastal
valleys, including those in the San Francisco Bay
region and the Central Valley, were situated to
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Figure 8 Advanced Very High Resolution
Radiometer (AVHRR) visible image
for 2225 UTC 2 December 1992. Note
suggestion of mesoscale vortex in the
cloud mass (indicated by "T"). First
tornado occurred under the
southernmost portion of the vortex.
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channel low-level flow to a southeasterly
direction. The meso-low acted as a local focus
in the vicinity of STS, which at the time of
Fig. 7 was reporting an east wind. The "T" on
Fig. 7 gives the approximate position of the
second tornado at the time of the chart.

The enhanced Advanced Very High Resolution
Radiometer (AVHRR) visible satellite image for
2225 UTC (Fig. 8), about the time of the first
tornado touchdown, shows numerous showers
and thundershowers arrayed around the mid- and
upper-tropospheric circulation center west of
Point Arena. The initial development in the
Santa Rosa area was the southern-most in a
complex of thunderstorms which extended
northward and then northwestward across Cape
Mendocino. A mesoscale circulation, possibly
related to the meso-low near STS, is indicated by
the tight, comma shaped spiral indicated by the
letter "T".

iii. Buoyancy and Wind Shear Parameters

As in the case of the prototype, strong, cold
advection produced profound changes in the
sounding from 1200 UTC to 0000 UTC. The
layer temperature changes in the mid-troposphere
(Fig. 9) are even greater than those for the
prototype (Fig. 3).

The bogus STS sounding (Fig. 10a) was obtained
on the SHARP Workstation by insertion of the
2300 UTC STS temperature and wind
information into the OAK 0000 UTC sounding.
2300 UTC was chosen because this was the time
closest to initial tornado development. The
bogus hodograph (Fig. 10b) was constructed by
insertion of the surface wind for STS at 2300
UTC and by assuming that the narrow valley in
which STS lays would prevent any directional
shear until the crest at 5000 m (1500 ft). Storm
motion was determined from tornado track
information as summarized above.

The parameters given for the modified sounding
and hodograph in Table 2 verify ground
observations of storm rotation. Buoyancy and
shear were in the correct range for the
development of supercells and mesocyclone-
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induced tornadoes. The EHI value of slightly
less than | combined with a s-r helicity of 284 J
kg' were consistent with the development of
tornadoes in the F1 to F2 range.

C. Monterey Tornadoes of 6 December 1992
i. Description

Two F1 tornadoes occurred in the Monterey-
Carmel area between 2300 UTC 6 December and
0000 UTC 7 December (see Fig. 1 and Table 1).
Damage consisted mainly of many uprooted trees
and shingle loss to roofs. There were several
reports of waterspouts and funnel clouds off the
Carmel coast. Observations of the Carmel
tornado suggested that it occurred from the flat
base of the parent thunderstorm and no
observations of wall-clouds or lowered bases
reported. Damage surveys indicated that the
path length of the Carmel tornado was 7 miles
and that of the second tornado in Monterey was
1 mile. These surveys also indicated that the
tornadoes moved along with the thunderstorm
motion, as observed on SAC weather radar.

ii. Synoptic and Sub-synoptic Controls

The 500 mb analysis for 0000 UTC 7 December
1992 (Fig. 11) shows a negatively-tilted trough
extended from the Gulf of Alaska southeastward
over California. The trough was associated with
strong mid-tropospheric CVA (not shown). The
axis of the upper-tropospheric jet stream
intersected the California coast near Vandenberg
Air Force Base. The mid-tropospheric
expression of a jet streak is evident by the height
contour packing on the southern periphery of the
trough (Fig. 11).

At the time of the tornado reports, a cold front
was in the process of advancing through the
north-central portions of California. AVHRR
infrared imagery for 2317 UTC (Fig. 12), about
45 minutes before the first tornado report,
indicated that considerable enhancement of the
frontal cloud band had occurred east of the main
mid-tropospheric trough axis in the vicinity of
the left front quadrant of the advancing jet
streak. Strong thunderstorm development was
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Figure 12

AVHRR infrared image for 2317
UTC 6 December 1992.
Thunderstorm cells southwest of
Monterey peninsula produced
waterspouts and tornadoes about
45 minutes after image time.




evident from just east of San Francisco
southwestward across the coastline near
Monterey.

Since there are few observations in the Monterey
area and the front lay over the data-sparse
Pacific, subsynoptic analyses could not be used
to provide insights to the focus for this case.
However, since the surface winds in the
Monterey area, the San Francisco Bay region,
the southern Sacramento Valley, and the northern
San Joaquin Valley were all southeasterly at this
time, it appears that no evidence for a mesoscale
focus would be discerned from subsynoptic
analyses. In addition, since the funnel clouds
and waterspouts which preceded the tornadoes
were observed over the Pacific, west of Carmel,
it is probable that any such focusing mechanisms
would have been active west of the coastline and
away from any observation sites.

iii. Buoyancy and Wind Shear Parameters

Mid-tropospheric cold advection and low-level
diurnal heating produced 12 h temperature
changes (Fig. 13) in the Monterey area in the
same sense (but of a smaller magnitudc) than
those observed for the other cases considered.
The destabilization for this case was not as
marked as that which occurred for the other
cases. In fact, the B+ (Table 2) obtained from
a bogus 0000 UTC MRY sounding (Fig. 14a),
constructed on the SHARP Workstation, is the
smallest of the cases discussed in this study.

The bogus hodograph for MRY (Fig. 14b) was
constructed by insertion of the 0000 UTC wind
observation for MRY and the true storm motion
as determined from SAC weather radar. The 0-2
km positive shear and 0-3 km s-r helicity, as
estimated from the SHARP Workstation analysis
of the bogus hodograph, were also somewhat
smaller than those observed for the other cases
(Table 2). The curvature of the hodograph
between the surface and 2000 m was clockwise
and, with the storm motion indicated, produced
a s-r helicity of 254 m’ s?, a "rotational
potential" which can support weak tornadoes,
according to Davies-Jones et al. (1990).
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Although the BRN obtained from the sounding
(Fig. 14a) was in a range which suggested
developing thunderstorms might have
supercellular characteristics, the buoyancy and
shear evident in Table 2 for this case were likely
too small for mesocyclone development. This is
substantiated by the EHI of 0.6, by far the
smallest of such values for the cases considered
in this study.

The parameters summarized in Table 2 for this
case suggest that the potential for cold sector
funnels and weak tornadoes region-wide was
high in this case. However, no discernible
mesoscale or subsynoptic focus was evident
which would have aided forecasters in localizing
the threat to the Monterey area. This lack of
focus is probably consistent with the fact that
both anecdotal evidence and buoyancy/shear
parameters indicate that these tornadoes were not
mesocyclone-induced.

D. Oroville-Marysville (Loma Rica)
Tornadoes of 17 December 1992

i. Description

Two tornadoes occurred in the southern

Sacramento Valley between 2125 and 2330 UTC
17 December 1992 (see Fig. 1 and Table 1).
The first tornado passed through the town of
Oroville at 2125 UTC and produced substantial
damage (personal communication, Mr. Chris
Fontana, Meteorologist in Charge, WSO
Redding) along its path length of 3/4 mile. A
previous report (Monteverdi, 1993) described the
usefulness of the SHARP Workstation in
providing guidance to forecasters in anticipating
this event.

The second tornado occurred at 2330 UTC and
passed through an unpopulated area near Loma
Rica, which is a small village around 15 miles
northeast of Marysville. Videotapes and
eyewitness reports verified both the presence of
a wall-cloud and the subsequent touchdown of
the tornado outside of Loma Rica. Other reports
indicate that the tornado was "cone-shaped" as it
traversed its approximately 5 mile path length.
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Analyses of radar and satellite imagery confirm
that both tornadoes were associated with a
thunderstorm which moved southeastward
through the Sacramento Valley. There were
unconfirmed reports of golf-ball size hail and
other funnel clouds when the storm was between
Oroville and Marysville.

ii. Synoptic and Subsynoptic-scale Controls

The synoptic pattern which occurred on 17
December 1992 (Fig. 15) was the most similar
of the other December 1992 cases to the
prototype described earlier. CVA associated
with an advancing jet streak seemed to play an
important role in diagnosing a vertical motion
field which enhanced thunderstorm development
and contributed to destabilization. The jet streak
was evident (Fig. 15) by the vorticity dipole
centered at 43°N, 130°W.

Satellite imagery during the morning of 17
December showed open cellular cumulus west of
the coastline in the hours before the initiation of
convection in the Sacramento Valley, with
greatest enhancement under the left front
quadrant of the advancing jet streak. This
pattern was quite similar to the schematic "type"
associated with strong to severe convection in
northern and central California (Fig. 2).

Figure 16 gives the 2200 UTC 17 December
subsynoptic analysis for northern and central
California. Note that upvalley, southerly flow
was occurring ahead of a subsynoptic scale
trough located in the southern Sacramento Valley
even though northwesterly winds characterized
the low-level flow in the San Francisco Bay
region.  Mesoscale or subsynoptic lee-side
troughs are common in patterns which closely
resemble the prototype surface and mid-
tropospheric patterns (Fig. 2), discussed in
section 2.

The prestorm moisture flux convergence field
over California (Fig. 17) was characterized by
two maxima, one associated with the frontal
system over central California and another
associated with the trough line. Maxima of
moisture flux convergence indicate a mesoscale
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focus for destabilization and/or wind
convergence (Doswell, 1985 and many others).
The tornadic thunderstorm (indicated by the
letter T on Figs. 16 and 18) initially developed in
the northern-most area of surface moisture flux
convergence ahead of the trough line and north
of the main front. Moisture flux convergence
occurring in association with post-frontal troughs
was also found to be an important feature in the
prestorm environment with the 24 September
1986 tornadoes in the Sacramento Valley (Braun
and Monteverdi, 1991).

Wind Shear

iii. Buoyancy and

Characteristics

Strong cold advection in the mid- and lower-
troposphere, in association with the trough (Fig.
15) advancing southeastward, caused pronounced
destabilization over northern and central
California. The cooling in the 900-400 mb layer
was very marked, as is evident in Fig. 19, which
shows the 12 h layer temperature changes for the
period from 1200 UTC 17 December and 0000
UTC 18 December. Figure 19 was obtained by
substitution of the surface data for MYV into the
respective OAK soundings. It is intcresting to
note that the development of favorable buoyancy
for the three mesocyclone-induced tornado cases
considered in this study was associated with
similar 12 h layer temperature changes, as is
evident from a comparison of Figs. 3, 9, and 20.

The bogus 2200 UTC MYV sounding (Fig. 20a)
was constructed on the SHARP Workstation.
The sounding information (Table 2) substantiates
the fact that weak positive buoyancy
characterized the lower-troposphere even though
the 500 mb Lifted Index (LI) indicated negative
buoyancy at that level. As pointed out in Braun
and Monteverdi (1991) and Monteverdi (1993),
the 700 mb LI provides a more accurate
indicator of instability in cold sector California
events, particularly during the cool season (-3.5
in this case).

The bogus MYV hodograph (Fig. 20b) was
created from the 1200 UTC OAK hodograph by
substitution of the 2200 UTC surface wind at
MYV and by insertion of the true storm motion
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tornadic thunderstorm at this time
indicated by "T".
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Figure 17 Surface moisture flux convergence

field (10-7 s-1) for 2100 UTC 17
_December 1992. Positive values
indicate moisture flux convergence.



> —30 C
-30.1 to -35 C
=35 0 o =4l &

-40.1 to —45 C

< =45 C

AVHRR infrared image for 2245 UTC
17 December 1992. Tornadic
thunderstorm indicated by letter "T".

Figure 18

19




obtained from SAC weather radar (indicated by
arrow). The modified hodograph shows the type
of low-level curvature indicative of high
rotational potential, verified by the s-r helicity of
454 m? s2. The weak buoyancy of 552 J kg'is
in the correct range to support strong and violent
tornadoes if the positive shear exceeded 10 x 107
s (Johns et al., 1990). The positive shear of 13
x 107 s combined with the s-r helicity gives an
EHI of 1.17, suggesting that storms in the
southern Sacramento Valley could be associated
with strong (F2 or F3) tornadoes.

Iv. DISCUSSION AND CONCLUSIONS

Previous studies (Braun and Monteverdi, 1991;
and Monteverdi, 1993) have pointed out that
shear profiles which support s-r helicities
favorable for storm rotation can be created or
augmented locally by most valleys in northern
and central California. Since both the Coast
Range and the Sierra Nevada trend northwest-to-
southeast, most ridges and valleys are oriented in
the "proper" direction to channel low-level
southwesterly and southerly flow to
southeasterly. For the cases considered in this
study, this low-level channelling combined with
the west-southwest flow in the mid-troposphere,
created a situation in which moderate to strong
streamwise vorticity was generated in the low-
level flow. As a result, in all of the cases
considered in this study, s-r helicities achieved
values which could support moderate to strong
tornadoes.

The southern Sacramento tornado events of 17
December 1992 occurred in a synoptic and
subsynoptic setting very similar to that associated
with the "prototype" 24 September 1986 Vina
tornado. Of the soundings and hodographs
considered here, those for 17 December 1992
(Figs. 20a and 20b) most closely resembled those
for the Vina tornado (Figs. 4a and 4b). In the
Vina event (Braun and Monteverdi, 1991), a
post-frontal subsynoptic trough focused the
topographically channelled low-level flow. It
appears that, in the case of the 17 December
1992 tornadoes, proper phasing of synoptic-scale
features also supported the development of a
subsynoptic, leeside trough in the Sacramento
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Valley which, in turn, augmented the channelled
flow in the same manner. The s-r helicities for
these two events were the greatest of those
calculated for all events considered here and
actually were in a range which could support
strong (24 September 1986) and strong to violent
(17 December 1992) tornadoes (Table 2).

Strong and violent tornadoes have been observed
for a wide range of buoyancy and shear ratios
(Johns et al., 1990). While moderate buoyancy
was associated with the Vina event (Table 2),
only weak instability occurred for the December
events. This was partially due to the fact that
although all of the events considered here were
"cold sector", the Vina tornado occurred in a
warm season environment characterized by much
higher temperatures and dew points than those
that occurred with the December 1992 tornadoes.
This study substantiates the conclusions of Johns
et al. (1990), and many others, that weak
instability can be associated with at least
moderate mesocyclone-induced tornadoes if shear
values are in favorable ranges. In the case of the
events considered here, only the Monterey
tornadoes occurred in an environment in which
the buoyancy to shear ratios failed to support
strong thunderstorm rotation.

Each of the three December events occurred in
a synoptic pattern which corresponded to one of
the two already discussed in the literature as
being associated with cold-sector tornadoes in
California (Hales, 1985; Braun and Monteverdi,
1991). The Monterey and southern Sacramento
Valley tornadoes were associated with a
progressive mid-tropospheric pattern similar to
that of the "prototype" discussed earlier in this
study. The Santa Rosa/Sebastopol tornadoes
occurred in a similar pattern except that the mid-
tropospheric trough became closed off west of
the coastline. This apparently kept the greatest
upper-tropospheric divergence and ascent along
the coast.

This study indicates that careful subsynoptic
analyses and thoughtful consideration of
buoyancy and shear information, obtained
interactively on the SHARP Workstation (or any
similar analysis system) by the forecaster, can
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Figure 20 (a) Bogus MYV sounding, 2200 UTC
17 December 1992. Dashed line
shows surface lifted parcel.
Surface conditions indicated by
arrow.
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determined from SAC weathe:
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indicate a mesoscale or subsynoptic focus for
those tornado events in California which are
mesocyclone-induced.  On the other hand,
determination of such a local focus may not be
possible for thunderstorms which do not have
supercellular characteristics and those
supercellular events which are initiated over the
data-sparse Pacific.

This study also suggests that buoyancy and shear
parameters may yield operationally useful
guidance in distinguishing between the threat for
funnel clouds, or weak, moderate, and strong
tornadoes in California cold sector thunderstorm
events. Research is continuing at San Francisco
State University (SFSU) to determine buoyancy
and shear information for all of the tornado and
funnel cloud events in northern and central
California since 1950.
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