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THE 10 FEBRUARY 1994 OROVILLE TORNADO: A CASE STUDY

Mike Staudenmaier, Jr.
National Weather Service Office
Sacramento, California

ABSTRACT

An F2 tornado touched down in the northern portion of the Sacramento Valley
on 10 February 1994 causing significant damage in Oroville, California. This
study documents the event and explores the possibility that the storm had
supercellular structures including a mesocyclone. A collision of mesoscale
boundaries interacting in a low buoyancy environment acted as the focus for the
development of the thunderstorm. A strong barrier jet along the west side of the
Sierra Nevada acted to create strong storm-relative helicity in this environment.
Dry air rotating around the base of an upper-level trough acted to destabilize the
atmosphere allowing for an enhancement of the convection. The orientation of
the Sacramento Valley is such that strong storm-relative helicity can be created,
under certain synoptic conditions, which is sufficient to develop rotation in
developing thunderstorms. Rotation was detected in the mid levels of this storm
and was likely responsible for the development of the damaging F2 tornado.

INTRODUCTION

60 seconds on the ground with a path

On 10 February 1994, strong
thunderstorms developed in the northern
Sacramento Valley. At approximately 2230
UTC, an F2 tornado (damage survey by
Weather Serice Office (WSO) Redding)
touched down near Oroville, California (see
Fig. 1 for locations). This tornado was
associated with a small complex of
thunderstormswhich developed explosively
around 2200 UTC after a cold frontal
passage aloft. Due to the unique
topography found in the Sacramento
Valley, these thunderstorms encountered
an environment supportive of supercellular
development with strong low-level wind
shear. Although the instability was not
extreme, this wind shear was sufficient to
develop an F2 tornado which damaged 37
homes and injured one person in the town
of Oroville. Remarkably, the tornado was
estimated to have only spent between 40 to

width of 10 to 20 yards.

Most northern and central California
tornadoes occur after a strong, cold frontal
passage aloft. Thus, the environment of
storm genesis is located in the cold sector
of the storm, characterized by low
buoyancy. Most California tornadoes were
thought to be mainly touchdowns of cold
air funnels, but recent studies have shown
that some of the larger tornadoes which
have occurred in California may have been
mesocyclone induced (Braun and
Monteverdi 1991; Monteverdi and Quadros
1994). McCaul (1990, 1991) has shown that
supercellular convection can even occur in
low-buoyancy environments frominternally
generated pressure perturbations
associated with tropical storms with
significant low-level wind shear. Thus, if a
favorable ambient wind shear profile is
present, mesocyclone-induced



tornadogenesis can occur even in a low
buoyancy environment such as the cold
sector of a synoptic-scale storm. Hales
(1985) has shown that topography can
create a shear profile favorable for
supercellular convection in the Los Angeles
Basin. Braun and Monteverdi (1991) have
shown that channeling effects in the
Sacramento Valley can produce wind shear
profiles favorable for supercellular
convection.

When the location of California tornado
occurrence is investigated, a few areas of
the Central Valley appear more favorable
to tornadic development. Figure 2, which
shows tornado touchdowns between 1961
and 1991, illustrates that the northern
Sacramento Valley clearly has a localized
maximum of tornado touchdowns over
southern Tehama County and Butte and
Glenn Counties. South of this region in
the southern Sacramento Valley, only a few
touchdowns have been recorded. Much of
the San Joaquin Valley has had tornado
touchdowns, however no discernable spacial
pattern is evident.

Over the last 10 years, many technological
advancements have been made in the
National Weather Service software
programs which diagnose the current
atmospheric patterns, giving forecasters a
better estimate of what to expect in the
short term. This has greatly improved the
ability of forecasters to determine severe
weather potential and to forecast areas
which are likely to see damaging
thunderstorms. This paper will examine
two of the new advancements, the Skew-
T/Hodograph Analysis and Research
Program, or SHARP (Hart and Korotky
1991), and the usefulness of PC-GRIDDS in
manipulating gridded data. These
programs will be used to diagnose the
conditions that led to the Oroville tornado.

All of these topics will be investigated
further in this study. Primarily, this study
will illustrate the conditions which led to
the development of the Oroville tornado.
The usefulness of both PC-GRIDDS and
the SHARP Workstation in determining
areas of severe weather potential and
forecasting the likely character of severe
weather for this case will also be examined.
This study will compare the environment
of the Oroville tornado with the results
from other studies of California tornadoes
in order to add to the sparse body of
literature on severe thunderstorms in
California. Finally, the apparent tornado
maximum in the northern Sacramento
Valley will be investigated further.

II. ANTECEDENT CONDITIONS
OF THE OROVILLE TORNADO

By 1200 UTC 10 February 1994, an
environment supportive of severe
thunderstorms was developing over the
northern portion of the Sacramento Valley.
A moderately strong mid- and upper-level
cold front was located to the west of
California.  This system had moved
southward from the Gulf of Alaska, a track
typical of "high latitude" cyclones (Weaver
1962). There was very little surface
reflection to this system. This is typical of
frontal systems which are in their later
stages of evolution. This type of frontal
structure is common in the western United
States, western Europe, and the United
Kingdom and usually consists of a sharp
moisture discontinuity aloft with little
surface reflection (Browning and Monk
1982). Located behind this upper-level
cold front were open-celled cumulus
indicating the cold pool aloft and the
instability of the airmass behind the front.
This cumulus field showed greatest
enhancement under the left front quadrant
of an advancing jet streak aloft.



Due to the topography of the Sacramento
Valley, the general overall synoptic pattern,
and a strong ageostrophic secondary
circulation around an upper-level jet
streak, a southerly low-level barrier jet was
likely present. The low-level barrier jet in
the Sacramento Valley has been researched
by Parish (1982) and was found to occur
between 1200-4500 feet above ground level
when a cold front and/or upper-level
trough approached the mountains from the
west (Fig. 3). The cross-mountain flow
which develops over the Sacramento Valley
is initially statically stable and becomes
dammed against the east side of the valley
creating the low-level barrier jet. On 10
February 1994, the barrier jet was likely
enhanced significantly by the secondary
circulations of the strong jet streak aloft.
Unfortunately, wind profiler data was not
available for this day, but the barrier jet
has been seen on other days when similar
conditions have prevailed (Fig. 4). Below
the radiation inversion, surface winds were
generally southeasterly at around 10-15
mph but were forecast to increase through
the day as the upper system moved
onshore and tightened the surface pressure
gradient.

In the mid and upper levels, strong positive
vorticity advection (PVA) increasing in
height was occurring over northern
California (Fig. 5). This PVA was expected
to increase through the afternoon. A 20 X
10 s unit absolute vorticity center, at the
500 mb level, was located about 200 miles
west of the California coast and was
forecast to be over northern California by
0000 UTC 11 February (Fig. 6). Isentropic
and orographic lift were also strengthening
through the day as seen in the time cross-
section for the Oroville region (Fig. 7).
Synoptic-scale lifting generally acts to
destabilize the atmosphere, by lowering the
level of free convection. This increases

the environmental lapse rate which
increases the positive buoyancy of a parcel.

Strong cold air advection was occurring
into the base of the trough indicating that
the trough would deepen as it moved
eastward (Fig. 8). 500 mb temperatures of
less than -30.0°C were located in the base
of the trough. In advance of the trough at
lower levels, weak warm air advection was
occurring over California with 850 mb
temperatures greater than +5.0°C. Since
this area of very cold temperatures aloft
was forecast to propagate over northern
California, becoming vertically collocated
with the area of warm air advection at the
lower levels, a sharp decrease in stability
was expected to occur.

Due to the baroclinicity with this system,
strong winds were located at all levels, but
were especially concentrated west of the
trough axis. A speed maximum was
forecast to rotate through the base of the
trough and propagate over central
California by 0000 UTC. This would create
a large area of synoptic lift in the mid-
troposphere over most of northern
California. At 1200 UTC, wind speeds of
greater than 100 knots at 300 mb (Fig. 9)
and greater than 40 knots at 850 mb (Fig.
10) emphasized the strength of this
system.

The vertical wind profile plays an
important role in determining what type of
severe weather may occur. However, it is
not something quickly or easily calculated
from a glance at a Skew-T/log-P diagram.
An examination of an observed or modified
hodograph will indicate in which kind of
environment a storm will develop.
Weisman and Klemp (1982), among others,
have shown that a low-level wind veering
and increasing with height is a necessary
criteria for the development of long-lived
rotating thunderstorms. The low-level
wind shear vectors, particularly in the



lowest 3 km, should appear curved in a
clockwise sense (i.e., veer with height) on
the hodograph. In these situations, the
tilting of horizontal vorticity into the
vertical is maximized and high values of
helicity are produced. Davies-Jones et al.
(1990) found that a 0-3 km storm-relative
helicity value approaching 150 m?/s”
generally supported mesocyclone
development. A value of 151-299 m?*/s*
supported weak tornadoes; while a value of
300-499 m®/s” supported strong tornado
development. These should not be taken
as rigid boundaries, but rather very general
guidelines to tornadic activity. If the
hodograph is a straight line, multicellular
development is likely. As previously
stated, it has been shown that marginal
instabilities, as estimated by CAPE, or
Convective Available Potential Energy,
may be associated with strong to severe
tornadoes if they are coincident with high
values of storm-relative helicity.

Weisman and Klemp (1982, 1984) have also
shown that much of the relationship
between storm type, wind shear, and
buoyancy can be represented in the form of
a Bulk Richardson Number, R, defined to
be

B
1/2 P

where B is the buoyant energy in the
storm’s environment (or CAPE) and Uisa
measure of the vertical wind shear. U is
calculated by taking the difference between
the density-weighted mean wind over the
lowest 6 km and a representative surface
layer wind (500 m mean wind). The
numerical modeling results of Weisman
and Klemp (1982, 1984) and calculations of
R for a series of documented storms both
suggest that unsteady, multicellular growth
occurs most readily for R > 30 and that
supercellular growth 1is confined to
magnitudes of R between 10 and 40.

However, while ratios of buoyancy to shear
might suggest that rotation is possible
within a storm, tornadic potential can be
realized only for those cases where the
synoptic and mesoscale environments are
supportive for the development of
thunderstorms for a long enough period of
time.

The Oakland, CA (OAK) sounding from
1200 UTC indicated a thick, moist layer
extending from the surface to 825 mb (Fig.
11). This was capped by a dry, more stable
layer between 825 mb and 800 mb. From
800 mb to 575 mb, the lapse rate
approached moist adiabatic, with dry air
located above 575 mb. The low levels of
the OAK sounding were similar to the
Sacramento low-level sounding, thus it
provided a good proximity sounding for the
Sacramento Valley. The Lifted Index at
500 mb was +6.0°C, but was +2.0°C at 700
mb, indicating that most of the buoyant
energy available for storm development
would be located below 500 mb. The wind
profile in the OAK sounding was missing
for the lowest 3000 feet, but likely
indicated some veering with height since
the wind was light southeasterly at the
surface but southwesterly above 900 mb.
However, in the valley, due to the barrier
jet, significant veering with height was
occurring in the vertical wind profile.

The Medford, OR (MFR) sounding for the
same time period indicated a much thicker
moist layer extending up to 700 mb before
encountering the remnants of the dry and
warm layer (Fig. 12). The fact that this
dry layer has been lifted significantly
higher at MFR indicated that the moist
layer increased in depth towards the north,
and that stronger, more persistent,
synoptic lift along with dynamic
destabilization was occurring at MFR. The
wind profile for MFR showed some turning
of the wind, but nothing of any
significance.



III. ANALYSIS AND STORM
EVOLUTION

Gridded data from the 1200 UTC Eta
model run indicated that strong PVA was
to move over the region throughout the
day, as the cold core system moved
onshore. Of more importance for the
severe weather threat, however, was the
dry air intrusion which was shown to be
advecting into the region over the next 12
hours (Figs. 13-14). This area of low
equivalent potential temperature air was
also apparent in the water vapor imagery,
as a dry slot on the west side of the trough.
A PC-GRIDDS-derived Q-vector field of the
850-400 mb layer indicated a large area of
implied ascent in the mid-troposphere over
northern California (Fig. 15). This thermal
imbalance and its associated ascent, would
lead to destabilization over this region.

The six-hour forecasted gridded data field
valid at 1800 UTC indicated that parts of
California were becoming very conducive to
the development of thunderstorms. The
280K isentropic surface indicated an area
of strong isentropic rising motion from
northeastern California to southeastern
California (Fig. 16). When the 286K-306K
atmospheric column was investigated, an
area of weak static stability was found from
southwestern Idaho across northern
California to south of San Francisco (Fig.
17). When adiabatic moisture flux
convergence was investigated, an area of
dynamic destabilization could be seen over
northern and eastern California as well
(Fig. 18). This area was destabilizing as
warm moist air forced isentropes apart due
to convergence of mass. Pressure advection
at the 282K isentropic level indicated the
upward velocities were occurring over
northern and eastern California (Fig. 19).
This broad area of rising motion in the
lowest levels contributed to increasing the
lapse rate over this region and destabilizing

the airmass further. Although the
strongest areas of pressure advection and
adiabatic moisture flux convergence were
occurring south of the Oroville area at
1800 UTC, it is likely that much of this
unstable airmass in the lower atmosphere
was being advected northward due to the
barrier jet on the east side of the valley.

Satellite imagery at this time (not shown)
indicated that the cold front was
propagating across northern California.
The frontal band of cloudiness associated
with the front was pushing southward
across central California ahead of the
advancing front. This was allowing
insolation to occur over northern California
causing destabilization to occur. Although
the topography was destroying the
baroclinicity of the front in the lower
levels, the wupper-level front remained
strong.

A normalized cross-section from 48°N
128°W to 30°N 117°W at 1800 UTC
indicated that strong secondary circulations
were located underneath the jet streak
aloft over the area of concern (Fig. 20).
Strong southeasterly flow was occurring at
the surface likely contributing to the
strong south to southeasterly barrier jet.
Thus, isallobaric contributions from the
rapidly deepening surface low and strong
secondary circulations due to the jet streak
aloft were both enhancing the southerly
flow in the Sacramento Valley ahead of the
approaching system.

At 1900 UTC, the sub-synoptic analysis
indicated that a weak pressure trough
extended northward through the middle of
the Sacramento Valley (Fig. 21). This
pressure trough In the valley had been
documented in other case studies as well
(Weaver 1962; Braun and Monteverdi 1991;
Monteverdi 1993). Of significant note were
the strong southeasterly winds on the
eastern side of the valley. Sustained winds



of greater than 20 mph with gusts
approaching 30 mph indicated that
momentum from the barrier jet was mixing
down to the surface. Additional
accelerations were being forced by the
isallobaric component of the wind.
Dewpoints in this region were rapidly
approaching 50°F or more, further
decreasing the convective stability over this
area.

South of Redding, a strong
windshift/moisture discontinuity could be
identified. This feature was moving toward
the southeast and was probably forced by
terrain channeling of the geostrophic
upper-level winds. Whiteman and Doran
(1993) have investigated the relationship
between wvalley and ridgetop wind
directions and identified four different
mechanisms for their relationship. Of the
four, terrain channeling was likely the
most important parameter in terms of the
development of this windshift/moisture
discontinuity. In their study, Whiteman
and Doran (1993) found that in certain
situations a small wind shift aloft can lead
to a 180 degree wind shift at the valley
floor due to terrain channeling. Since this
channeling forces the low-level wind in a
valley to take on the component of the
upper-level wind that is parallel to the
valley, the strong southwesterly flow ahead
of the cold front was producing strong
southerly flow in the valley. However, west
to northwest flow was located behind the
cold front. Thus, as the front propagated
over California, a strong windshift line
developed at the north end of the valley
and propagated southward with the upper-
level front. Due to downslope flow and
subsidence, this northerly wind was also
very dry, with dewpoint temperatures in
the 30s. Thus, a moisture discontinuity
was created as well as a windshift line.

The 2000 UTC analysis indicated that the
windshift/moisture discontinuity had

moved farther south, pushing through the
Red Bluff area (Fig. 22). Thunderstorms
were forming at the triple point between
the surface windshift line and the valley
pressure trough near Red Bluff. The
dewpoint temperature at Chico (CIC) was
now 54°F with winds gusting to 20 mph
from the southeast while Red Bluff had a
dewpoint temperature of 49°F and falling,
with winds from the west at 10 mph.
Stronger surface winds were developing as
the surface pressure gradient became
stronger across the southern portion of the
Sacramento Valley.  Thus, significant
moisture convergence was occurring along
this windshift line as it moved into the
more unstable airmass to the south.

At 2005 UTC, a funnel cloud was reported
over Tehama County. This funnel cloud
was very short-lived, and was likely a cold-
air funnel developing as the cold equivalent
potential temperature minimum air aloft
continued to destabilize the atmosphere.
At this time, satellite imagery indicated
significant clearing occurring across the
northern Sacramento Valley as the upper-
level front continued to propagate
southeastward over California.

By 2100 UTC, water vapor satellite imagery
clearly indicated the dry slot advecting
around the base of the trough and pushing
over the triple point at the surface (Fig.
23). This was the dry air that was evident
in the 1200 UTC MFR sounding. Visible
satellite imagery (Fig. 24) indicated that
significant clearing had occurred allowing
for solar insolation to continue to rapidly
destabilize the airmass over the northern
Sacramento Valley. Although hard to see
in this image, a thin line was beginning to
form along the windshift line as
thunderstorms rapidly developed from
northeast to southwest. The surface
analysis at this time indicated strong
southeasterly flow into the region of the
triple point which represented increasing



moisture convergence and strong baroclinic
surface vorticity at that location (Fig. 25).
Oroville had a dewpoint temperature of
51°F with 25 mph sustained winds from
the southeast. The pressure gradient
continued to strengthen over this area as
solar insolation decreased the pressure
over the northern portion of the valley,
and cloud cover remained over the
southern portion. A secondary push of
drier air had formed on the west side of
the valley and was now propagating
northeastward as evident from the wind
shift from southerly to westerly and the
dewpoint drop of 2°F at Brooks (BSS).

By 2200 UTC, a large anvil was covering
the northern Sacramento Valley as a large
thunderstorm rapidly developed along the
triple point. As will be seen later, this
storm was now In a region of significant
low-level shear with a Bulk Richardson
Number less than 15. Chico (CIC)
reported a windshift at the time of
observation as the windshift line, or
possibly the gust front, began to move
through the city (Fig. 26). Towering
cumulus were being reported north
through southeast as thunderstorms began
to develop southward along the Sierra
Nevada foothills. However, the
thunderstorm to the north of CIC was
dominating the local environment as many
of the other thunderstorms began to
weaken due to the upper-level subsidence
forced by this rapidly growing
thunderstorm. As the near-surface air was
lifted by the gust front, it likely began
rotating in the high helicity environment
near CIC, ultimately developing into a
mesocyclone.

At 2228 UTC, the Redding WSO received a
phone call from the California Department
of Forestry (CDF) Headquarters in Oroville
reporting that they were "looking at a
tornado out their window". The National
Weather Service at Sacramento was called

for radar confirmation, but the WSR-57
radar only indicated VIP level 2 in the
vicinity of Oroville (Fig. 27). Of greater
importance however, was the WSR-88D
Doppler radar which indicated a weak
circulation in the mid and upper levels of
the storm likely indicative of a developing
mesocyclone. This rotation was seen by
meteorologists working at WSO
Sacramento (SAC) that afternoon.
Unfortunately, only one velocity image was
archived, as testing of the radar was
occurring at the same time. This 2.4° scan
of velocity indicated strong storm top
divergence occurring with this storm (Fig.
28). Since the storm was about 60 miles
away, the beam of the radar was slicing
through the storm at the 18,500 foot level
which was close to the storm top of 22,000
feet. Satellite imagery (not shown)
indicated a "V-notch" signature which also
remarks on the strength of the storm and
the upper-level divergence.

By 2300 UTC, the surface analysis showed
that the outflow boundary was propagating
to the east-southeast (Fig. 29). While the
storm was moving to the southeast, the
actual tornado path was to the northeast.
This possibly occurred during the meso-
occlusion stage of the mesocyclone. Asthe
storm reached the Sierra Nevada foothills,
it took a more eastward track, as did the
dissipating tornado (as witnessed by an
observer located east of Oroville). The
tornado dissipated soon afterward.

Another interesting occurrence between
2200 and 2300 UTC was a polarity switch
in cloud-to-ground lightning reported by
the BLM Lightning Detection Network.
Before 2200 UTC, only negative strikes
were occurring, however between 2230 and
2300 UTC, only one positive strike
occurred (and no negative strikes). After
2300 UTC, more negative strikes were
reported. This polarity switch in tornadic
storms has been documented in other cases



as well (Branick and Doswell 1992; Curran
and Rust 1992).

A sounding representing the local
environment of the Oroville tornado was
created by using the gridded model data
from the 1200 UTC Eta model run and
interpolating the temperature and
dewpoint data for the mandatory levels
with the 12 hour forecast for 0000 UTC 11
February (Fig. 30). This was to simulate
what was available to forecasters that
morning. These data were entered into
the SHARP Workstation and the surface
was modified to represent the surface
pressure of Oroville, adjusting for the
temperature and dewpoint which was
expected to occur. The winds were also
adjusted to represent the southerly low-
level barrier jet in the valley and the
strong west to northwesterly winds located
aloft.

This sounding clearly indicated that the
environment was conducive to the
development of supercellular type storms.
A Bulk Richardson Number of 11 combined
with a 0-3 km storm-relative helicity value
of 355 m?/s* using the storm motion
vector from 321° at 19 kts, suggest that
developing storms could have complex
structures with supercellular
characteristics (Weisman and Klemp 1982;
Davies-Jones 1990). The CAPE was
calculated to be near 750 J/kg which was
not highly unstable, but as previously
stated, with high helicity values, large
instability is not needed for tornadogenesis
(McCaul 1990). Storm-relative inflow in
this environment was from the southeast
at 40-45 knots, which verifies the strong
convergence which was assumed from the
sub-synoptic analyses. The Lifted Index at
the 500 mb level at this time was -3.0°C,
but at 700 mb was -4.0°C. The hodograph
was indicative of a veering of the wind with
height in the lower troposphere with
northwest winds above this (Fig. 31).

Gridded data at 0000 UTC indicated that at
the 250 mb level, a large area of cyclonic
vorticity advection was occurring over
northern California juxtaposed with an
area of warm air advection (Fig. 32). This
was leading to strong height falls at the
surface and a rapid deepening of the
surface low from 1020 mb at 1200 UTC to
1008 mb at 0000 UTC. This rapid
deepening created strong southerly
isallobaric winds across most of eastern
California. Associated with this strong area
of warm air advection and cyclonic vorticity
advection was a tropopause fold in the
upper troposphere. This tropopause fold
can be seen in a equivalent potential
temperature temporal cross-section as
362K stratospheric air replaces 340K
tropospheric air (Fig. 33). Strong rising
motion ahead of this tropopause fold
suggests the strength of this upper system.
As discussed by Hirschberg and Fritsch
(1991, 1993), thermal advections in the
vicinity of tropopause undulations can be
quite large and will have a great effect on
height tendency in the lower atmosphere
and its associated vertical velocity. Of
additional note was the stable layer present
at 1200 UTC between 800 mb and 500 mb
which was forced upward to a position
between 600 mb and 400 mb by 0000 UTC
by these vertical motions. This was the
dry, stable layer which was present in the
OAK and MFR soundings from 1200 UTC
and at 0000 UTC. Under this dry stable
layer was a moist unstable area, and as the
dry stable layer was lifted, dynamic
destabilization in the lower levels increased
the depth of the moist unstable layer. The
dry air intrusion could be seen occurring
from 09 hours (2100 UTC) to 30 hours as
low equivalent potential temperature air
advected into the region. This air was not
much cooler than the air it was replacing,
thus the decrease in equivalent potential
temperature was due mainly to a lack of
moisture. This feature was the upper-level
front discussed earlier.



A cross-section from 36°N 132°W to 40°N
112°W at 0000 UTC indicated that the
strong rising motions in the secondary
circulations had decreased (Fig. 34). A
strong outflow from the upper-level jet
could be seen at the 200-300 mb layer near
the jet streak and tropopause fold. The
strong secondary circulations seen in the
near-surface layer earlier had weakened
significantly. Although the airmass behind
the cold front was unstable, as seen in the
low values of equivalent potential
temperature by 0000 UTC, there was a
very strong cap between 700 and 500 mb
which was prohibiting any convective
instability from being realized.

IV. TORNADO OCCURRENCE IN
THE NORTHERN SACRAMENTO
VALLEY

As previously stated, it appears that certain
areas of the northern Sacramento Valley
are more prone to thunderstorms which
may take on supercellular structures.
These storms are responsible for a
maximum of tornadic activity over areas of
southern Tehama County and Butte and
Glenn Counties. South of this region there
are relatively few recorded tornado
touchdowns. A possible explanation for
this is a lack of population centers between
Red Bluff, in Tehama County, and
Sacramento. However, the relative flatness
of the land and the abundance of
agriculture in the Sacramento Valley would
suggest that tornadoes should have a good
chance of detection by agricultural
workers. Damage would likely be noticed
by them after the storm was over, even if
the tornado was not seen. Also, many
small communities have developed across
this region over the last ten years adding
to the potential for tornado sightings.

More likely, however, is that the maximum
in tornado occurrence over the northern

Sacramento Valley is due to meteorological
forcing, such as the existence of a barrier
jet developing along the east side of the
valley and a maximum of convergence
between the valley trough and
southeastward moving windshift lines,
often associated with upper-level fronts.
Additional convergence is likely over the
northeastern portion of the Sacramento
Valley as the Sierra Nevada Mountains
extend further westward and Sutter Buttes
rise out of the valley floor.

Parish (1982) has found that low-level
mountain parallel jets are a common
wintertime and early springtime feature
along the western slope of the Sierra
Nevada Range. He proposes that the
development of the barrier jet occurs
whenever a large-scale component of wind
is directed towards a mountain chain
causing the air to be forced to rise over the
barrier. If the air has a high static
stability, the forced ascent is resisted and
appreciable deceleration occurs. This leads
to the damming of stable air against the
mountains and consequently an increase in
pressure along the windward slopes. The
resulting damming leads to a pressure
gradient force strikingly dissimilar to the
large-scale conditions, being directed away
from the mountains. If such conditions
persist for periods of time exceeding a few
hours, Coriolis effects become important.
The local pressure field will then support
southerly geostrophic-type motion parallel
to the mountains. Of course, friction and
diabatic effects must also be considered,
but their combined effect is not as easily
calculated. It was found that the strongest
winds were located 600-1500 m above
ground level, with a horizontal extent of at
least 100 km, reaching down into the
California Valley. He found that much
weaker winds existed at the surface below
the radiative inversion. Occasionally, a
valley trough formed with westerly winds
located on the west side, in striking



contrast with the surface

gradient.

pressure

Another reason for a preferred area of
thunderstorm development over the
northern Sacramento Valley 1is the
climatological location of the triple point
formed between the valley trough and a
southeastward moving windshift line
associated with terrain channeling of the
ridgetop winds. As this windshift line
moves southeastward, a collision between it
and the valley trough will occur over the
northern portion of the Sacramento Valley.
It has been shown that the collision
between two boundaries is a preferred
region for the development of strong to
severe thunderstorms (Doswell 1985). This
was likely the genesis mechanism for the
Oroville thunderstorm. The near-surface
moist flow was vertically stretched as it
accelerated upward and began rotating in
the high helicity environment in the lower
levels which likely caused the Oroville
thunderstorm to develop into a severe
storm.

The orientation of the valley leads to a
gradient of Bulk Richardson Number
across the wvalley.  Bulk Richardson
Numbers will decrease from west to east
due to the increasing shear found on the
east side arising from the barrier jet
(assuming storm motion from a northerly
direction). The shear is likely increased
through compression on the east side of
Sutter Buttes and the merging of the
valley walls at the north end of the valley.
All of this leads to the lowest Bulk
Richardson Numbers on the east side of
the wvalley, likely within the values
supportive of supercellular development as
defined by Weisman and Klemp (1982).

All of these factors lead to an area in the
northern Sacramento Valley which appears
to be more prone to storms which may take
on supercellular structures. Due to the
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finite width of the valley, many of these
storms will likely develop rotation briefly,
if at all, and quickly return to a multi-
cellular structure when the foothills are
reached. Also, due to the post frontal
environment, storm tops are usually below
30,000 feet, thus limiting the extent to
which they can be examined by Doppler
radar. Thus, these storms take on
characteristics similar to the early stages of
supercells in the Midwest, but never have
enough time or instability to develop into
the much more powerful supercells which
plague that region.

V. DISCUSSION AND
CONCLUSION

The northern Sacramento Valley is an area
where interactions between a valley-
induced pressure trough and a strong
windshift line climatologically occur.
General convergence occurs here, as well,
due to a confluence of the valley walls. A
high occurrence of thunderstorm echoes
over this region, which are likely due to
this phenomena, can be seen in the WSR-
57 radar data archive (WSO-SAC).

A strong southerly barrier jet which
develops along the east side of the
Sacramento Valley during the winter
causes strong moisture convergence to
occur as well. Previous studies of
California tornadoes (Hales 1985; Braun
and Monteverdi 1991; Monteverdi and
Quadros 1994) support the theory that
shear profiles favorable for storm rotation
can be created by topography in California.
In the Oroville case study, this strong
southerly flow transported high moisture
values northward along the east side of the
valley-induced pressure trough. This moist
flow impinged on the southeastward
moving windshift line and was forced
upward. Strong thunderstorms developed
as a midlevel dry push advected over the



area adding to the destabilization. This
occurred in an environment which was
being destabilized by solar insolation due to
the midlevel dry push behind the upper-
level front. The near-surface moist
flow was vertically stretched as it
accelerated upward and began rotating in
the high helicity environment in the lower
levels which likely caused the Oroville
thunderstorm to develop into a severe
storm.

This study has explored the uses of the
SHARP Workstation and PC-GRIDDS in
determining the area of severe weather
potential on 10 February 1994. The
Oroville tornado was a good example of
how certain storms may behave under
optimum conditions over the northern
Sacramento Valley. The Oroville storm
appeared to contain brief supercellular
structures. These structures, including
mesocyclones and moderately strong
tornadoes, can develop due to high values
of valley-induced storm-relative helicity
which can support tornadogenesis even
within the post-frontal, low buoyancy
environment, This study shows how
important it is for forecasters to be aware
of the mesoscale processes which occur in
their forecast area and to realize when the
interaction between the mesoscale and the
synoptic scale can lead to the development
of severe thunderstorms and tornadoes.
With the implementation of the WSR-88D
Doppler radar in Sacramento, it is likely
that this type of thunderstorm will be
detected and investigated more closely in
the future.
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Figure 1

Map of nort}‘lerg California showing locations of major cities and Counties. The
city of Oroville is indicated by the square in Butte County.
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Figure 2 Tornado occurrence in northern and central California from 1961-1991.
(Compiled by Storm Data)
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Figure 3 Mountain-parallel motion components (m s”) derived from rawinsonde and K/A
data for 13 and 21 February 1979. Flight track shown by dashed line; flight
time listed at top. (From Parish, 1982)
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VAD wind profiler data from Sacramento WSR-88D for 20 February 1994. Note

strong winds in the lowest 3000 feet.

Figure 4
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Figure 5 Time-height cross-section of vorticity advection contoured every 1x107%?

(solid) and vertical velocity contoured every contoured 1
for 40°N 122°W. e every 1ub s? (dashed)
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Figure 6 Height contoured every 6 dam (solid) and vorticity contoured every 2x107 s
(dashed) at 500 mb valid 0000 UTC 11 February 1994.
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Figure 7 Time-height cross-section of equivalent potential temperature (K) (solid) and
vertical velocity contoured every 1pb s,
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Figure 8 Temperature advection contoured every 2x10 °C s in the 100
. O-
valid 0000 UTC 11 February 1994, 500 mb layer
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Figure 9 Height (solid) contoured every 12 dam and wind speed contoured every 10
at 300 mb valid 1200 UTC 10 February 1994.
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Figure 10 Height (solid) contoured every 3 dam and wind speed contoured every 10 knots
(dashed) at 850 mb valid 0000 UTC 10 February 1994,



Figure 11

Figure 12
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The Oakland (OAK) sounding for 1200 UTC 10 February 1994.
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The Medford (MFR) sounding for 1200 UTC 10 February 1994.
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Figure 13 Equivalent potential tempt‘arati;re (K) -' (solid) an.d equivalent potential
temperature (K) advection contoured every 0.7 K s (dashed) at 700 mb valid
0000 UTC 11 February 1994.
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Figure 14 Relative humidity (in 10 percent intervals) at 500 mb valid 0000 UTC 11
February 1994.



Figure 16 280K isentropic surface with pressure, contoured every 20 mb, (solid) and wind
barbs valid 1800 UTC 10 February 1994.



Figure 17 286-306K isentropic layer with stability (dark solid) and pressure at 306K
(dashed) valid 1800 UTC 10 February 1994.

Figure 18  Adiabatic moisture flux convergence (solid) with wind vectors valid 1800 UTC
10 February 1994.



Figure 19 Vertical velocity contoured every 1pb s due to pressure advection in the 286-
306K isentropic layer valid 1800 UTC 10 February 1994.
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Figure 20 Cross-section from 48°N 128°W to 30°N 117°W with ageostropic wind (barbs)
and normalized wind speed contoured every 10 knots (solid) valid 1800 UTC 10
February 1994,



1900 UTC
10 FEB 1994

Figure 21 1900 UTC 10 February sub-synoptic pressure analysis (solid lines, every mb)
indicating weak pressure trough (dashed line) along with a windshift/moisture
discontinuity (solid front with barbs).



2000 UTC
10 FEB 1994

Figure 22  Same as Figure 21 except 2000 UTC 10 February 1994,
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Water vapor imagery for 2100 UTC 10 February 1994.

Figure 23
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2100 UTC
10 FEB 1994

Figure 25 Same as Figure 21 except 2100 UTC 10 February 1994. Triple point indicated
by T.



2200 UTC
10 FEB 1994

Figure 26 Same as Figure 21 except 2200 UTC 10 February 1994. Mesohigh is
& represented by H and outflow boundary by hatched frontal boundary.
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Figure 27 Sacramento WSR-57 radar overlay of precipitation echoes from 2225 UTC 10
February 1994.
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WSR-88D 2.4° base velocity scan at 2244 UTC indicating storm top divergence.
Green represents movement towards the radar and brown represents
movement away.



2300 UTC
10 FEB 1994

Figure 29

Same as Figure 26 except 2300 UTC 10 February 1994.
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Modified hodograph for Oroville for 2200 UTC 10 February 1994.
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Figure 32 Warm air advection contoured every 1x10* °C s! (dashed) with cyclonic
vorticity advection contoured every 1x107° s (solid) at 250 mb valid 0000 UTC
11 February 1994.
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