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Abstract 

Since the acceptance of the WSR-880 in Phoenix, Arizona (KIWA), NWSFO 
Phoenix forecasters have been continually cognizant of an odd pattern of 
strong low-level winds apparent in the KIWA WSR-88D's Velocity Azimuth 
Display Wind Profile (VWP) during the hot late spring and summer months. 
Frequent, and surprisingly strong, derived winds from the southeast to south 
at speeds up to 40 kts are commonly represented in these profiles during the 
nighttime and early morning hours. The winds encompass a vertical area 
stretching from near the surface to around 15,000 ft MSL, begin shortly after 
sunset, and last several hours. Confusion among the forecasters stemmed 
from the fact that the southwest U.S. is dominated by light wind flow regimes 
during the warm season. The wind patterns in the VWP are rarely 
representative of true environmental conditions in the lower atmosphere or 
supported synoptically. It has been argued that this is clearly an example of 
VWP contamination, most likely caused by migrating birds. However, these 
patterns are not exclusive to the KIWA WSR-880 and can be found at other 
RDA sites across the southwestern U.S. Operationally, these discrepancies 
are significant as data from the WSR-880 VWP are often used for briefing 
and research purposes. In this report, three distinct examples are used to 
relate migrating bird patterns over the southwest U.S. to contaminated WSR-
880 output via the VWP. 

I. INTRODUCTION 

The WSR-88D's VAD Wind Profile (VWP) 
has proven to be a valuable tool to 
operational and research meteorologists. 
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When convective storms develop, 
forecasters use the VWP to assess the 
potential for multicell and supercell 
storms, and to predict likely storm 
movement and propagation. 



Additionally, aviation forecasters have 
found that the VWP is useful for detecting 
low-level wind shear (LLWS) and for 
briefing purposes. However, the radar 
has also proven to be an excellent 
detector of non-meteorological 
phenomena, especially migrating birds. 
For this reason, it is of the utmost 
importance to verify VAD-derived winds. 

The operational implications involved with 
using or disseminating contaminated 
VWP data are many. The use of 
contaminated data for forecast purposes 
can have substantial negative effects. 
Similarly, disseminating output from the 
VWP either verbally or as part of a 
briefing can be hazardous if it is 
unrepresentative of the environmental 
conditions present around the radar site. 
Yet all too often, the VAD-derived output 
is assumed to be representative of the 
environment surrounding the radar. 

Since its acceptance in March 1993, the 
KIWA radar site has continually detected 
a strong south to southeast wind flow in 
the lower levels of the atmosphere in its 
immediate vicinity. These winds are 
strongest during the hot late spring and 
summer months and can reach speeds as 
high as 40 knots. Typically these winds 
begin shortly after sunset and last for 
several hours at night, usually abating a 
couple of hours before sunrise. 

Many of the characteristics associated 
with bird migration over the southwest 
U.S. (liftoff times, flight speeds, direction 
of movement) are consistent with 
anomalous products produced by the 
KIWA WSR-88D. This Technical 
Memorandum relates bird migration 
patterns over the southwest U.S. to WSR-
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88D output by using examples in which 
environmental meteorological conditions 
did not support the VWP output. 

II. 8 I R D M I G R A T I 0 N 
CHARACTERISTICS AND THE 
WSR-880 

Historically, weather surveil lance radars 
have been used to study the migration of 
birds (Gauthreaux 1970). These systems 
readily detect birds in the atmosphere, 
and much of what we know about en 
route bird migration has been gathered 
using surveillance and tracking radars. 

Most bird migration occurs at night. 
Typically, birds depart en route stopover 
areas 30-45 minutes after sunset 
(Gauthreaux 1991 ). During the evening, 
songbirds tend to fly alone while 
waterfowl and shorebirds fly in flocks 
(Gauthreaux 1991 ). Although most 
migrating songbirds at night typically fly 
at altitudes below 2100 ft (Gauthreaux 
1991 ), waterfowl migration may occur up 
to 21,000 ft MSL (Bellrose 1976). Flight 
speeds of migrating birds vary depending 
on the size and type of bird such that the 
speed roughly doubles when the mass of 
the bird increases 1 00 times up to the 
lim it of 15-20 kg when flying is not 
possible (Berthold 1996: 168). During 
migration, average flight speeds range 
from about 15 to 35 kts for songbirds and 
from 25 to 45 kts for waterfowl and 
shorebirds (Aierstam 1990, Evans and 
Davidson 1990). 

Only one radar study has examined the 
migration of birds over the southwestern 
United States, and although the emphasis 
of the study was on waterfowl migration 
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(Beason 1978, 1980), some information 
on songbird migration was gathered 
(Beason 1976: 13-14). He noted that the 
highest rates of migration almost 
invariably occurred at night between 2200 
and 2400 local time at altitudes between 
1,500 and 6,000 ft AGL, and that 
migration to the north occurred under all 
wind conditions but was most common 
with tailwinds. 

Although migrating birds have been 
shown to contaminate wind profiler data 
(Wilczak et al. 1995), case histories of 
birds biasing wind data on the VAD and 
VWP products of the WSR-880 are few 
(Larkin 1991 , Jungbuth 1993, Gauthreaux 
in prep.). Since 1992, one of the authors 
(SAG) has studied bird migration 
detected on the WSR-880 and 
discovered numerous cases when the 
VAD and VWP products of the WSR-880 
were contaminated by bird migration. 

In most instances, migrating birds fly with 
tailwinds and bias wind speeds upward 
by 15 to 20 kts, but in several cases, the 
direction of the winds on the VWP were 
severely biased (e.g., 90-180° difference) 
when migrating birds were flying north 
and the winds were light and from the 
east and west, or from the north. 

Such cases clearly indicate that migrating 
birds have been included as reflectors in 
the VAD algorithm. Most migrating 
songbirds have air speeds between 15 
and 30 kts and most adjust their air 
speeds downward as a function of the 
speed of the tailwind. Concentrations of 
insects can also be detected by the 
WSR-880 and similar surveillance radars 
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(Russell and Wilson 1996), but insect air 
speeds rarely exceed 20 kts and are 
typically in the 8-10 kt range (e.g., Riley 
et al. 1996). 

Ill. METHODOLOGY 

Three cases are shown which verify that 
the winds produced on several VAD Wind 
Profiles are not representative of 
environmental conditions at the radar 
sites. Eta model PCGRIDDS output for 
0000 UTC 12 May 1996, 0000 UTC 18 
May 1996 and 0000 UTC 02 June 1996 
was used. 

Analyses at the 850mb, 700mb, and 500 
mb levels were reproduced. Overlaid 
were the geopotential heights (meters), 
relative humidity (tens of %) and wind 
(kts) to represent the atmospheric 
conditions at the time of initial analysis. 
In one of the cases, these analyses and 
two upper air soundings (Tucson and 
Flagstaff) were compared to VAD Wind 
Profile output to show that the output was 
not supported synoptical ly. 

VAD Wind Profiles for six RDA sites 
across the southwest U.S. (Phoenix, 
Tucson, Flagstaff, Las Vegas, San Diego, 
and Albuquerque) were used in Case 1. 
Only data from central Arizona and the 
KIWA (Phoenix) radar site were used for 
Cases 2 and 3. Additionally, for Case 2, 
KIWA VAD Wind Profile data are 
compared to pilot balloon (Pibal) flight 
data. These data were col lected 
approximately one mile west of the radar 
site. 



IV. CASE 1: 11 -1 2 MAY 1996 

Eta model initial analyses for 0000 UTC 
12 May 1996 generated from PCGRIDDS 
were chosen for this case because of the 
model's excellent handling of the relative 
humidity and wind conditions over the 
southwest U.S. for these dates. Satellite 
imagery and surface observations (not 
shown) confirmed that clear skies 
covered much of the southwest U.S. 

At the 850 mb level (Fig. 1 ), a weak 
cyclonic circulation is evident off the 
central California coast with a much 
stronger system off the British Columbia 
coast. Light winds of 1 0 knots or less are 
evident across most of the southwestern 
states. The highest relative humidity 
values are off the Pacific Northwest 
coast, associated with the British 
Columbia system. The dry low-level 
conditions that were present across the 
western states are well represented in 
this figure. 

A similar pattern is evident at 700 mb 
(Fig. 2). The main difference is that the 
higher relative humidity values are 
concentrated inland along the U.S.­
Canada border. Relatively light winds 
and dry conditions are clearly evident at 
this level as well. 

A ridge of high pressure is very evident at 
the 500mb level over the southwest U.S. 
(Fig. 3) with a weak trough off the central 
California coast and a stronger trough in 
the Gulf of Alaska. At this time, the 
closest mid- and high-level cloudiness to 
any of the RDA sites in question was 
moving into southern Oregon. This is 
captured well by the Eta model 
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PCGRIDDS relative humidity analysis at 
this level. Pronounced southwest winds 
are evident flowing into central California 
and Nevada with the main jet stream 
moving into the Pacific Northwest. 

VAD Wind Profiles from RDA sites across 
the southwest U.S. (Figs. 4-9) reveal 
relatively strong southeast to south winds 
to be prevalent across much of the 
southwest U.S. Specifically, the VWP 
output from the KIWA (Phoenix), KEMX 
(Tucson), KFSX (Flagstaff), and KESX 
(Las Vegas) radars (Figs. 4-7) is quite 
simi lar. 

These four sites exhibit southeast winds 
at speeds ranging from 15 to 30 kts. The 
vert ical extents of these winds are very 
similar, with the winds extending to 
around 17,000 ft MSL on all of the 
profi les. Additionally, the profiles took 
this configuration between 0300 UTC and 
0400 UTC 12 May 1996 (not shown). 

The KIWA base reflectivity product at 
1.5° for 0657 UTC 12 May 1996 (Fig. 
1 Oa) shows a large area of relatively high 
reflectivities surrounding the RDA site. 
The 1.5° base velocity product for the 
same time period (Fig. 1 Ob) shows a 
pronounced southeast flow and 
corresponds well to the VWP. 

The KEMX (Tucson) VWP for early that 
morning (Fig. 11 a) compares poorly to 
the Tucson upper-air sounding for 1200 
UTC 12 May 1996 (Fig. 11 b). A 
pronounced southeast flow is present on 
the VWP at speeds primarily around 20 
kts. The sounding has light north winds 
up to about 7,000 ft MSL, before shifting 
to a southerly and then southwesterly 
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direction between 10,000 and 15,000 ft 
MSL. 

Similar discrepancies can be found when 
comparing the KFSX (Flagstaff) VWP 
(Fig. 12a) with their morning sounding 
(Fig. 12b ). The VWP has strong south to 
southeast winds of 20 to 30 kts in south­
southeasterly (direction from 8,000 ft to 
about 13,000 ft MSL). The sounding, 
however, has light north winds near the 
surface with south winds of 1 0 to 15 kts 
between 10,000 and 15,000 ft MSL. 

The other RDA sites exhibit similar VAD 
Wind Profiles. With clear skies around 
the Region, it seems uncertain as to why 
these strong winds are apparent on all of 
the profiles, given an apparent lack of low 
and mid level meteorological scatterers. 

V. CASE 2: 17-18 MAY 1996 

For this case, a comparison of the KIWA 
VWP to atmospheric conditions over 
central Arizona is made. As with the first 
case, the Eta model was chosen because 
of its good initial analysis of the prevalent 
atmospheric conditions. Data from 0000 
UTC 18 May 1996 reproduced from 
PCGRIDDS are used for this case. 

An examination of 850 mb, 700 mb, and 
500mb data (Figs. 13-15), reveals that a 
fast-moving low-pressure trough had just 
skirted northern Arizona the previous day 
and was well northeast of the state, and 
that another trough was impacting 
northern California and the Sierra 
Nevada. 
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At the 850 mb level (Fig. 13), weak 
shortwave ridging is evident behind the 
low-pressure trough. Weak southwest to 
west flow is evident across central 
Arizona at speeds of less than 1 0 kts. 
Dry low-level conditions behind the 
trough are well represented. 

A pronounced west flow is also evident at 
700mb (Fig. 14) behind the fast-moving 
shortwave. Again, dry conditions are 
highly prevalent across central Arizona. 

At the 500 mb level (Fig. 15), flat ridging 
is evident across central Arizona with the 
most substantial relative humidity values 
and strongest winds well to the north of 
Arizona. Surface observations (not 
shown) revealed that only thin ci rriform 
cloudiness was present across central 
Arizona. 

A Pibal observation was taken at 
approximately 2235 MST 17 May 1996 in 
order to complement the upper air plot 
data. This was necessary since no 
routine soundings are taken at Phoenix. 
The balloon was released approximately 
one mile west of the KIWA radar site. 
The results of this flight again (Fig. 16) 
confirm the presence of a southwest to 
west flow from the surface up to about 
10,000 ft AGL. 

These data suggest that the KIWA radar 
VWP winds would have a southwest to 
west component. Rather, the VWP 
corresponding to the time of the Pibal 
flight (Fig. 17), shows the winds to again 
have a southeast to south orientation, 
especially between 5,000 and 10,000 ft 
MSL. 



There was a pronounced lack of 
meteorological scatterers present across 
central Arizona, except for the cirriform 
clouds. Again, this is not consistent with 
the KIWA VWP output. 

VI. CASE 3: 01-02 JUNE 1996 

For this case, data from the KIWA WSR-
880 were compared with Eta model initial 
conditions. Eta model data from the 0000 
UTC 02 June 1996 model run reproduced 
from PCGRIDDS were used. Skies were 
predominantly clear (not shown) with no 
discernable meteorological scatterers. A 
I ight wind-flow regime was in place with 
high pressure over the southwest U.S. 
(Figs. 18-20). 

At 850 mb (Fig. 18), winds over Arizona 
were variable at under 1 0 kts, but 
generally from the west over Phoenix. 
Relative humidity values were very low. 

Similarly, the wind pattern at 700mb over 
Arizona (Fig. 19) was also weakly 
defined. A deformation zone was present 
over central Arizona with light and 
variable winds. Again , relative humidity 
values were very low. 

At the 500 mb level (Fig. 20), a strong 
5940 meter ridge is present over the 
state. Accordingly, winds are light and 
variable (under 10 kts) with low relative 
humidity values over the state. 

The KIWA VAD Wind Profile for 0330 
UTC 02 June 1996 (Fig. 21) depicted 
light and variable winds until around 0330 
UTC, when east winds at around 15 kts 
begin to appear at around 10,000 ft MSL. 
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An inspection of the VAD Wind Profile for 
0508 UTC (Fig. 22) that same evening 
reveals that the layer of easterly winds 
expanded vertically and reached a depth 
of 8,000 ft. MSL. Easterly winds 
increased to 30 kts, and were consistent 
through a layer from around 8,000 to 
16,000 ft MSL. 

A KIWA base reflectivity product valid at 
0824 UTC 02 June 1996 (Fig. 23a) at the 
2.5° elevation slice, shows reflectivity 
maxima to the northeast and southwest 
of the RDA site. The height of the beam 
center at the locations of highest 
reflectivities is between 10,000 ft and 
11,000 ft MSL. The base velocity product 
showed a stiff east-southeast wind (Fig. 
23b) at speeds of 20 to 40 kts. 

The VAD Wind Profile pattern begins to 
dissolve later that night (Fig. 24 ). The 
profile shows a decreasing southeast 
wind after about 11 00 UTC. 

Clearly, the winds apparent on the VWP 
and base velocity products are not 
supported synoptically. It is possible that 
output from these VWPs could be 
misinterpreted as representing a 
mesoscale phenomena or as suggesting 
that model initial conditions are poor. 

VII. DISCUSSION 

The WSR-880 products shown in the 
aforementioned cases display 
characteristics representative of bird 
migration. During the late spring and 
early summer, considerable bird 
migration, including late-migrating 
waterfowl, shorebirds, and songbirds, is 



underway in the southwest U.S. (see 
seasonal occurrence charts in Davis and 
Russell 1990). 

The base reflectivity image from Case 1 
valid at 0657 UTC 12 May 1996 (Fig. 
1 Oa) depicts a pattern typically observed 
during nocturnal bird migration. This 
"explosion" of reflectivity values shortly 
after sunset can be expected during times 
of migration from en route stopover 
areas. The corresponding base velocity 
product (Fig. 1 Ob), showing the migration 
occurring to the northwest, is 
representative of the type of migration 
that occurs over the southwest U.S. 
during the late spring and early summer. 

The northwest direction of flight is 
apparent on all Case 1 VAD Wind 
Profiles (Figs. 4-7). The speeds 
represented on the VWPs are also 
consistent with songbird migration air 
speeds. 

The Case 2 VWP and base velocity 
products are similarly biased by migrating 
birds. Initial analyses and Pibal 
measurements verified that environmental 
westerly flow was present (Figs. 13-16). 
However, the VWP depicted southeast­
south winds. The migrating birds were 
severely biasing the VWP wind 
directions. Differences of around 70-90° 
are evident between the direction of flight 
of the birds and the environmental flow 
from near the surface up to about 10,000 
ft. AGL. Additionally, the migrating birds 
were biasing the wind speeds 
represented on the VWP by about 1 0-20 
kts. 

Several classic bird migration signatures 
are evident in the WSR-88D imagery 
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used in Case 3. It has been established 
(Gauthreaux 1991) that bird migration 
typically ensues 30-45 minutes after 
sunset. The initial VWP for this case 
(Fig. 21) begins to display easterly winds 
at 0330 UTC 02 June 1996. Sunset on 
this date occurred at 0233 UTC. Thus, 
the time of the change in the VWP 
pattern is consistent with the observed 
liftoff time used by migrating birds over 
the southwest U.S. Inspection of the 
VWP shows the pattern becoming more 
pronounced as the evening progresses 
(Fig. 22). 

The flight direction is consistent with what 
can be expected from migrating birds 
over the southwest U.S. during the late 
spring and early summer (Beason 1976: 
13-14). The highest base reflectivity 
values are to the northeast and southwest 
of the radar (Fig. 23a). This is logical 
considering that during a northwest 
migration (Fig. 23b), the highest 
reflectivities would be at locations 
perpendicular to the radar beam, as these 
birds would return a stronger signal to the 
radar than the other migrating birds. 

Bird migration over the southwest U.S. is 
a nocturnal activity. As can be seen on 
the last VWP for Case 3 (Fig. 24), the 
migratory pattern, and east wind, 
becomes more and more diffuse toward 
sunrise. At this time of day, the birds 
arrive at en route stopover areas to feed 
until they depart the next evening. 

VIII. CONCLUSIONS 

The anomalous WSR-88D wind fields 
used in this paper from the KIWA WSR-



88D and several other radars across the 
southwestern U.S. display characteristics 
consistent with those displayed by radars 
that have tracked migrating birds. The 
displays in this paper were al l co llected 
during a time of year during which bird 
migration over the southwest U.S. toward 
the north and northwest is quite 
pronounced (Davis and Russell 1990). 
Additionally, it has been shown that in 
none of the cases were the winds on the 
VWPs supported synoptically. Therefore, 
it is reasonable to conclude that the 
patterns on the VWPs used in this paper 
were caused by migrating birds. 

These cases highlight the need to verify 
the VWP winds prior to use in either 
operational or research endeavors. Had 
forecasters on duty at The Phoenix 
forecast office used these WSR-88D data 
as part of a briefing, they would have 
been using information not representative 
of the meteorological environment. 
Simi larly, researchers would have had 
anomalous data to work with and could 
have arrived at incorrect conclusions 
based on these data alone. 

It is of the utmost importance that users of 
the WSR-88D verify these wind fields 
prior to use as part of any operational or 
educational endeavors. It is hoped that in 
the future either software or hardware 
changes are made to the WSR-88D so 
that anomalies caused by migrating birds 
can be identified and removed. 
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Fig. 1 ETA model PCGRIDDS initial analysis of geopotential height (dam), relative 
humidity (tens of %), and wind (kts) at the 850mb level for 0000 UTC 12 May 
1996 
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~ig. 2 ETA .~odel PCG~IDDS initi.al analysis of geopotential height (dam), relative 
· hum1d1ty (tens of Yo), and Wind (kts) at the 700 mb level for 0000 UTC 12 May 

1996 



Fig. 3 ETA .~odel PCGRIDDS initial analysis of geopotential height (dam) relative 
hum1d1ty (tens of %), and wind (kts) at the 500mb level for 0000 UTC 12 May 
1996 
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Fig. 12a KFSX (Flagstaff) VAD Wind Profile for 1321 UTC 12 May 1996 
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Fig. 13 ETA model PCGRIDDS initial analysis of geopotential height (dam), relative 
humidity (tens of%), and wind (kts) at the 850mb level for 0000 UTC 18 May 
1996 



Fig. 14 ETA model PCGRIDDS initial analysis of geopotential height (dam), relative 
humidity (tens of%), and wind (kts) at the 700mb level for 0000 UTC 18 May 
1996 
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Fig. 15 ETA model PCGRIDDS initial analysis of geopotential height (dam), relative 
humidity (tens of%), and wind (kts) at the 500mb level for 0000 UTC 18 May 
1996 
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Fig. 18 ETA model PCGRIDDS initial analysis of geopotential height (dam), relative 
humidity (tens of %), and wind (kts) at the 850mb level for 0000 UTC 02 June 
1996 
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Fig. 19 ETA model PCGRIDDS initial analysis of geopotential height (dam), relative 
humidity (tens of%), and wind (kts) at the 700mb level for 0000 UTC 02 June 
1996 
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Fig. 20 ETA model PCGRIDDS initial analysis of geopotential height (dam), relative 
humidity (tens of %), and wind (kts) at the 500mb level for 0000 UTC 02 June 
1996 
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