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Inferenced Oceanic Kelvin/Rossby Wave Influence on
North American West Coast Precipitation

Martin E. Lee”
«Dudley Chelton ~

Abstract

The complex interaction of coupled ocean-atmosphere processes is still far from being

completely understood, and documented. This Technical Aftachment documents a
nonclassic, oceanic Kelvin/fRossby wave conceptual model to partially explain above
normal 1994-1996 precipitation patterns along the North American west coast. The
proposed conceptual model focuses on an eastern Pacific post-El Nifio heat transfer
mechanism associated with oceanic Kelvin/Rossby waves that potentially affect
preferential atmospheric forcing, resulting in selectively focused offshore storm track and
moisture advection trajectories. Synergistic components of this model thereby have the
potential to enhance (orreduce) U.S. west coast interannual precipitation.- The magnitude
of U.S. west coast flood damages incurred during the winters of 94/95 and 95/96 imply
that analysis and assimilation of this proposed conceptual oceanic Kelvin/Rossby wave
interaction may be worth considering in order to improve accuracy in forecast expectations
for timing and placement of both above and below normal west coast annual and
interannual precipitation. Other implications resulting from this research also include: 1)
the imminent necessity of incorporating a multidisciplinary, combined earth systems
approach in west coast precipitation forecasting; and 2) a concluding argument regarding
the continued necessity for in situ oceanic observation programs beyond tropical latitudes.

1 Introduction recognizing the economic and social value

of accurate precipitation forecasts,
Accurate prediction of local precipitation is dedicates significant resources to
important for early flood warning and increase lead times of watches and
reservoir management, especially in warnings for flood and flash flood events
mountainous areas of the western United (Olson et al. 1995). However, abrupt and
States where severe flooding during vast data sparse upstream conditions
“heavy precipitation occurs in steep terrain commencing along a dominant land-sea
and narrow valleys (Miller and Kim 1996). boundary, marked by the west coast of
The National Weather Service (NWS), the United States and the Pacific Ocean,

" National Weather Service, Northwest River Forecast Center, Portland, Oregon.
Corresponding author address: Martin E. Lee, NWS NWRFC, 5241 NE 122nd Ave. Portland
OR 97230. E-mail: mlee@nwrfc.noaa.gov.

" College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR
97331; also a TOPEX/POSEIDON Science Working Team Principal Investigator.
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infroduce pronounced: complexity to
precise forecasting ' of significant

precipitation. Upstream, air-sea interaction
has the potential to modify both

atmospheric temperature and wind fields- - |

that may then alter even global-scale

atmospheric and oceanic circulations (Min-

“wei and Dayong 1988). The ability to
produce reliable forecasts -in NWS

Western:Region locations of the United .

States is thus .dependant on an
appreciation and

ocean- atmosphere interactions.

During the winter of 1994- 95 Callfornla 1
received unusually large amounts of .

precipitation, with the Russian River Basin
being among the hardest hit areas in
January 1995, reporting overan estimated
800 million dollars in flood-related

damages from just three consecutlve,

strong storms between 7 and 11 January

(Miller and Kim 1996). In the following
winter (1995 96), western Oregon and

Washington were inundated with
numerous record-breaking winter floods.
What substantive mechanism/s
contributed to this sequence of
mterannual events? In general terms,
vanatlon in Pacific coast precipitation is
the result of “annual variation in the
interaction . between the maritime
westerlies from the North Pacific and the
mountains of the U. S. West Coast” (Chen
et al. 1996).

This Technical Memorandum considers
hypothetical "nonclassic” (Hobbs et al.

1996) upstream . ocean-atmosphere . .

interactions responsible for producing
excessive winter (1994-95, and 1995-96)
west coast precipitation. Although not

necessarily in the respective order given

here, the dominant conceptual

Vconceptual,i
understanding of - significant upstream

- 1995.  This

considerations .in this analysis can be

- ‘'summarized by the following questions: 1)

What are oceanic Rossby waves? 2) Did
an interannual (1994-1996) heavy

-precipitation pattern shift northward along

the west coast of the United States in
association with a propagating oceanic
Rossby wave associated with a
pronounced but concluding El Nifio event,
trailing off with dlmmlshmg propagatlon
speed at increasingly high latitudes? 3)
What is the surface manifestation of
oceanic Rossby waves as pertains to ajr-
sea interaction that may. affect
precipitation? 4) Are sea surface
temperature (SST) anomalies assomated

~ with oceanic Rossby waves S|gn|f|cant

enough to alter preferred low-mid Iatltude

_moisture advection trajectorles localized
atmospheric forcing, and resultant

interannual west coast | precnpltatlon

‘patterns? and 5) Is it cost—effectlve to

even consider oceanic Rossby waves as
a relevant factor in North American west
coast operational forecastlng'? and 6)
What are the short-long term implications
if the answer to questlon number 5 is
uyes”?

Il Significant 1994-1996 Trans-
Pacific Ocean/Atmosphere
Patterns - ‘ ‘

The Spnng of 1995 was marked by below—
normal equatorlal eastern Pacific SSTs,
and was followed by an active western
Pacific Typhoon season in the fall of
indicated that warm
equatorial surface water had shifted west

-of the date line. The spring and summer

of 1996 provided further confirmation of
this in a disastrous manner. During this
period Typhoons Ann, Frankie, Gloria,
and Herb produced severe damage in



Eastern Asia. Forexample, early-mid July
1996 severe, typhoon related weatherand
flooding in southern-central China was
responsible for approximately 1,108
deaths, and an estimated $11.23 billion in
economic losses across Anhui, Guangxi,

Guizhou, Hubei, Hunan, Jiangsu, Jiangxi,

and Zhejiang provinces. In these
provinces, flooding was responsible for
damage to approximately 2.8 million
homes and the collapse of another
810,000 homes, leaving millions of people
homeless, and also destroying over 5
million tons of grain (Reuters Limited,
Beijing: July 25, 1996).
into Eastern China, Typhoon Gloria was
responsible for an estimated 50 deaths in
the Philippines (Philippine News Agency,
Manila: July 29, 1996), and $21 million in
crop damages across southern Taiwan
(Reuters Limited, Hong Kong: August 2,
1996). Typhoon Herb then caused
another 39 deaths in the Philippines
(Reuters Limited, Manila: July 29, 1996),
also before clipping Taiwan and moving
into Eastern China.

Remnant decaying tropical storms
advecting to higher latitudes then resulted
in 68 deaths and $246 million in flood
. damage across South Korea (Reuters
Limited, Seoul: July 31, 1996). This
included the loss of an estimated four tons
of ammunition (hand grenades, mortar
and artillery shells, and land mines) swept
away by flood waters. Another estimated
860 tons of ammunition stored near the
North Korean Border was buried by flood-
induced landslides. During this stormy
~ season in the western Pacific, Typhoon
Bart typified a fully recurving storm (Fig.
1), with its decaying remnants entraining
into a trans-Pacific westerly jet stream,
eventually resulting in U.S. west coast
precipitation interception during May

Before moving

W

19986. However, this U.S. west coast
precipitation was minor in significance
when compared to cumulative U.S. west
coast winter 1994-95 and 1995-96
precipitation.

Halpert et al. (1996) note that abnormally
high 1994-95 winter season precipitation
was observed in California and the
southwestern United States. This pattern,
especially from December 1994 to
February 1995, was associated with an
eastward extension of a jet stream core
across the Pacific and into California.
During January 1995, the jet stream core
and storm track aimed at California was
displaced approximately 18° of latitude
south of their typical location. Resulting
significantly above-normal precipitation
steered into California at that time,
producing excessive flooding throughout
the state. During-January 1995, the
southern Cascades, the northern Sierra
Nevadas, and several central-coastal
California locations observed 950-1050
mm of precipitation, and October-April
totals in parts of southern California
reached at least two times the normal-
seasonal total records (Fig. 2). According
to the Products and Services Division of
the National Climate Data Center, over
3.0 billion dollars in flood damage was
assessed from January-March 1995
flooding in California - including 27
deaths.

In the following winter (1995-96), severe
river flooding (especially west of the
Cascades) occurred in western
Washington and northwestern Oregon,
where 200-500 mm of heavy rain fell from
November-December 1995 (Fig. 3).
Enhanced warm, moist, southwesterly
flow facilitated this excessive precipitation
pattern anomaly. As noted above, March-



May. 1995 marked the end of .El Nifio/
Southern Oscillation (ENSO) conditions
across the Pacific. For example, below
normal SSTs developed from the South

American coast and the equatorial Pacific

to 120°W, where SSTs reached -1.0°C in
many areas (Fig. 4). Central Pacific
maximum positive SST anomalies ‘had
significantly diminished, and. .central
equatorial Pacific atmospheric convection
returned to normal.. Near normal low-level
equatorial easterlies also reappeared, and
western Pacific SST anomalies exceeded
0.5°C above normal between 120°E to
150° E

El- Nifio proce“sses, by classic definition,
were therefore relinquishing control of
weather patterns over the eastern Pacific.
Yet, according to -the Products and
Services Division of the National .Climate
Data Center,. February 1996 Oregon
uninsured flood damage :alone ‘reached
400 million dollars: Over 300 million
dollars damage to Oregon highways and
waterway -.infrastructures. was. also
reported. Overall flood damage to. the
Pacific Northwest is now estimated. to
approach $1 bilion = including 14
fatalities. : Thus, one of the driving

questions -becomes: - “What other

mechanisms have we learned enough
about to.explain this above normal, non El
Nifio. winter precipitation . pattern over
western North America?” S

Surprising structure and ‘symmetry in
eastern Pacific March-May 1996 positive
SST anomalies (Fig. 4) provide potential
clues to answering the previously raised
question.. For. example, a coupled,
northern and southern . hemisphere,
 poleward "banana-shaped" positive SST
anomaly structure ‘is evident: over the
eastern Pacific in Fig. 4, symmetric about

the equator. Subsidiary clues are derived
from an.apparent northwestward shift of
eastern Pacific positive SST anomalies
along the U.S. west coast, from March-
May 1995 to September-November 1995.
This northern hemisphere, northwestward
SST positive anomaly shift is puzzling in
the context of first -order eastern Pacific
semi-permanent atmospheric and ocean
current circulation patterns. For example,
clockwise circulation around semi
permanent eastern Pacific high pressure
results in mean equatorward surface wind
components along the southwestern U.S.
coast. * Similarly,. eastern Pacific: mean
ocean currents along the western U.S.
coast are charactenzed by equatorward
flow (Fig. 5) ,

A dlrect correlatlon eXIsts between the
organized eastern Pacific' positive SST
anomaly behavior described above - and
positive Sea Surface  Height " /(SSH)
anomaly structure (Fig. 6). Additionally,
this 1995-1996 . ocean: system
phenomenon has symmetry. matching
strong November 1995 and February
1996 storm tracks — routed fromnear the
Hawaiian Islands, along northward.curving
subtropical jet.streams, often referred to
as a “Pineapple Express.” . . These
associations eventually resulted in the
formulation of a conceptual model . that
can explain' the previously discussed
northwestward shift of SST anomalies.
The “positive, symmetric SSH anomaly
structure in Fig. 6 correspond to-positive
SST anomalies (Bob Cheney 1996,
personal communication) via a selective
redistribution of -heat energy (Dudley
Chelton 1997, personal communication).
Both the positive SST and SSH offshore
anomalies are associated with oceanic
Rossby waves.  In the following sections,
this association is developed into a



conceptual model that can be used to
inferentially explain how and why oceanic
Kelvin and Rossby waves may be linked
directly to: 1) poleward shifts of eastern

Pacific positive SST anomalies; and 2)

selectively focused precipitation patterns
along the U.S. west coast. Concluding
sections of this text also explore the
plausibility and ramifications of this
proposed model, as well as subsidiary
planning, design, and management
issues.

L Oceanic Rossby Wave
Observations and Theory

- Technological advancement in
observation sampling capabilities has
made it possible to improve our
understanding of ocean circulations that
play critical roles in varying climate over a
wide range of time scales: from seasonal
to interannual (e.g., EI Nifio phenomenon)
to decades and even centuries - as
revealed in recent ice core analyses
(Johnson et al. 1992). Our ability to
identify ever smaller scale ocean
circulation processes is also increasing.
For example, the decline in intensity of the
eastward flowing Kuroshio Extension and
its westward recirculation gyre has been
linked to energy transfers from the mean
current flow to an eddy field in a region
south of the Kuroshio Extension (Qiu
1995). In the quest to further understand
these increasingly evident complex ocean
system processes, remote sensing has
become the most practical approach to
observe seasonal-to-interannual ocean
variability on global scales with adequate
space and time resolution; and recent
advancements in satellte observing
systems have significantly improved our
ability to monitor global ocean circulation.

A precision radar altimeter aboard the
TOPEX/POSEIDON satellite provides the
most accurate, currently available
altimeter data for studying general ocean
circulation and its variability (Fu et al.
1994; Fu and Cheney 1996). This s
possible using altimetric measurement of
sea surface elevation, because low-
frequency sea level variations (i.e., with
tidal variation removed) are indicative of
motions throughout much of the water
column - extending to the sea floor in
certain instances (Pedlosky 1979).
TOPEX is the U.S. acronym for Ocean
Topography Experiment, a joint mission
with France. POSEIDON, the mythical
Greek god of the sea, is the acronym for
the French- contribution to this mission.
The TOPEX/POSEIDON satellite is a
modified Multimission Modular Spacecraft
configured with the first spaceborne dual-
frequency (5.3 and 13.6 GHz) radar
altimeter.  The radar altimeter was
designed and constructed by the Applied
Physics Laboratory of the Johns Hopkins
University (APL/JHU), and the 2,500 kg
satellite was launched into a highly stable
orbit on August 10, 1992, by an Ariane
42P rocket from the European Space
Agency’s Guiana Space Center in French
Guiana (Fu et al. 1994). The launch
vehicle was contributed to this project by
the “"Centre National d’Etudes Spatiales
(CNES),” or the National Center of Space
Studies, France’s equivalent of NASA.

The TOPEX/POSEIDON satellite has a
66° inclination orbit ~ 1,336 km above the
Earth’s surface (Fig. 7). Sea surface
height is observed by a TOPEX radar
signal reflected off the ocean’s surface.
The dual-frequency altimeter allows for a
correction for ionospheric effects on the 2-
way travel time of radar pulses. The time
calculated for a standard local sea level



radar return is compared to the measured
return time. If the return signal takes less

time, the ocean surface is: above its

standard reference sea level.  Insertion
into orbit was so successful that:sufficient
fuel remains aboard the satellite t6 sustain
its- mission significantly beyond the year
2000. S - :

‘Satellite -altimetry, provided via projects
‘like the TOPEX/POSEIDON mission, is
probably the only way that global oceanic
circulations can be studied relative to the
sea surface as a reference level, because
the geostrophic surface velocity can.be

determined. from the "satellite derived |

surface ~height (Fu and Smith: 1996).
-Qcean surface currents are initially forced
by momentum  transfer from -.the
atmosphere.  Yet,. once free from direct
forcing - by the wind, these nearly
geostrophic currents tend t6 move slowly
and nearly frictionlessly under pressure
:gradient and -Coriolis force influences.

Thus, sea surface height anomaly data
across these  currents facilitates
theoretical current velocity estimations. A
positive 1 cm sea surface height change
may generate an elevated slab containing
the equivalent of several millions of cubic
meters .of water per second, a rate of
discharge greater than all the rivers in the
world (from the JPL TOPEX/ POSEIDON
Mission HomePage, http//topex-
www.jpl.nasa.gov/). - Although lesser in
scope, significant responses also occur at
smaller than global-hemispheric scales,
where other quasigeostrophic processes
are at work.. Oceanic Rossby waves fall
within this category.. The theoretical
oceanic Rossby wave length scale L, (-
the Rossby deformation radius) is.equal to
the product of a characteristic buoyancy
frequency and its vertical scale divided by
the Coriolis parameter. At ~ 30° latitude,

L, ~ 70 km, compared to the analogous
atmospheric Rossby length scale, L, ~

1900 km.. Conversely, the time scale for

L, ~ 60 days, while the time scale for L.~
2 days (Stewart:1985). Local vertical,
latitudinal variation of the Earth’s angular
rotation vector - resulting from.curvature
of the Earth’s surface = provides:the
restoring force for oceanic Rossby waves
(Pedlosky 1979). ‘These: " waves are
considered to play a key role in modern
large-scale ocean circulation theory. They
are also considered an important
mechanismin the westward intensification
of large-scale circulation gyres.(Anderson
and Gill 1975; Anderson et al. 1979).

Wind and. thermal buoyancy forcing, : at
eastern ocean boundaries ‘and. interior
regions, generate oceanic Rossby waves;
and El Nifio events are also oceanic
Rossby:wave generators (Barnett et al.

- 1991; Neelin et al.. 1994; Battisti and
Sarachik . 1995). . Eastward propagating
oceanic equatorial Kelvin waves, forced-in

the western Pacific by wind anomalies
associated with El Nifio events, generate
poleward propagating coastally trapped
Kelvin waves when they reach the eastern

boundary of the Pacific, resulting rin
positive sea surface height anomaliesthat

have been observed to propagate as far
north as the Gulf of Alaska.. These forced,;

" positive ‘sea. surface height anomalies’

generate westward propagating oceanic

Rossby waves along the west coast of the

Americas. .:Model results suggest that
these westward propagating waves may
extend well into high latitudes, covering
the entire North Pacific; remaining largely
undamped to. 160° W .longitude,. and
continuing into ‘the western Pacific. a
decade later (Jacobs et al. 1994). Jacobs
et al. (1994) also note that El-Nifio
generated oceanic Rossby waves may be



linked with North Pacific mid latitude
ocean circulation anomalies a decade
later. They have hypothesized that these
transient ocean circulations may have a
non-trivial impact on North American
weather patterns. The simplistic
theoretical impact these Rossby waves
have on eastern Pacific meteorology is
that they appear to facilitate a complex
exchange process. The 1-10 cm sea
surface height signatures of oceanic
Rossby waves are associated with much
greater thermocline depth variations (~ 3
orders of magnitude, and opposite in
sign). Thus, oceanic Rossby wave signals
represent large thermal variations in the
upper ocean.

Initially, oceanic Rossby waves provide
transient ocean circulation adjustment in
response to large-scale atmospheric
forcing. The resulting anomalous change

in ocean circulation may then be capable’

of influencing climate. . Despite their
importance in time varying oceanic
processes, Rossby wave surface
signatures are difficult to detect, with
height variations of less than 10 cm over
wavelengths ranging from hundreds to
thousands of kilometers. However, the
TOPEX/ POSEIDON altimeter is capable
of continuous measurement accuracy of ~
3 cm since becoming fully operational in
October 1992, and amplitudes as small as
~ 1 cm can be detected in large-scale sea
level signals over the entire world ocean,
after measurement error filtering is
-performed. The TOPEX/POSEIDON

altimeter is thus able to detect oceanic -

Rossby waves unambiguously (Schlax
and Chelton 1994; Parke et al. 1987; Fu
et al. 1994). The remainder of this
Technical Memorandum examines the
associative correlations of these oceanic
Rossby waves, via their sea surface

height and SST anomalies, with potential
1994-1996 eastern Pacific and western
North American weather modification.

IV Tropical Air-Sea Interaction

Bocheng and Qiyu (1988) remark that “the
western tropical Pacific Ocean is the
largest heat and moisture source on the
earth....” As a result, it has a significant
impact on Asian, as well as world climate.
Variations in western tropical Pacific
current systems are intimately linked to EI.
Nifio events. This air-sea interaction is
the subject of intensive research that has
resulted in our increased appreciation of
how both oceanic and atmospheric
responses are inextricably dependent
upon forcings and exchanges between
these two complicated systems. For
example, Hendon and Salby (1996) note
that atmospheric frictional wave-CISK
(conditional instability of the second kind) -
explains eastward frequency selections in
western Pacific tropical to subtropical
atmospheric circulation and anomalous
convection interactions. In the western
Pacific this interaction is highly correlated
with equatorial frictional convergence that
shifts towards warm SST anomalies, and
is associated with dynamical responses
involving forced Kelvin and Rossby wave
disturbances. Shifting toward positive
temperature anomalies results in a net
tropical eddy available potential energy
gain that facilitates ampiification of
eastward convective components, and the
frequency of these eastward components
is dominated by unstable tropical Kelvin
wave structure in the atmosphere.
However, frictional wave-CISK
correlations (assuming a zonal SST
variation) become insignificant in the
eastern Pacific - because typically colder
SSTs do not provide sufficient



climatological convection. This distinction
of eastern Pacific tropical-subtropical
atmospheric processes, different from
those in the western Pacific, is another
manifestation of how- important it is ‘to
understand alr—sea lnteractlons over the
‘Pacific. - :

-Tropi‘ca’l‘Pacific Ocean SSTs are relatively
.uniform, . in. that cold, dense water
characteristically lies below a thin, wind-
mixed layer (~ 100 m-thick) of much
warmer water. The highly stratified region
'separating the weakly stratified 'shallow
and deep layer is called the thermocline
(Stewart 1985). However, at the onset of
~the 1986-1988 EI Nifio/Southern
Oscillation (ENSQ) episode, anomalous
‘eastward transport of warm surface mixed
‘layer water.was observed equatorward of
10° N latitude. In response to the
eastward export of surface mixed layer
water away from the western Pacific, the
thermocline in the tropical western Pacific
‘essentially “shoaled,” coinciding - with
.observed decreases in dynamic height
over ‘the- upper (300-400 m) tropical
‘western Pacific Ocean (Toole et al. 1988).
Eastward export of warm surface layer
‘water also resulted in colder temperatures
observed over the surface of the tropical
western Pacific Ocean

Accordmg to Chan and Lau (1988) SSTs
are one of the most significant factors .in
the . generation and "maintenance of
tropical  convective . cloud: processes.
These convective processes have been
correlated with selective variance around
tropical SSTs of 28°C, and outgoing
longwave radiation values of ~ 240 Wm2,
The .SST relationships between a
convectively active, .. relatively.: warm
western Pacific.. versus a convectively
suppressed, relatively .cooler eastern

Pacific may vary by only a few degrees C.
Hansen ' (1988) categorized -~  1°C
anomalies observed during 1986 in the
Pacific as "large.” "Various moist process
cycles, resulting in eastward propagation
of convection toward the eastern Racific
(including El Nifio/Southern 'Oscillation
(ENSO) events) may .be attributed to
these smaller warm. .SST anomalies
through their enhancement of unstable
conditions conducive to sustained
atmospheric: convection (Chan and Lau
1988). - ,

This un_steble air-sea interaction is la‘r‘gely

driven by turbulent flux exchange across
the ocean-atmosphere . interface,
transforming SST anomalies into diabatic
Heating that results in forcing of the free
atmosphere (Min wei-and Dayong 1988).
In the tropics, significant positive and/or

‘negative SST anomalies can also. be

frequently correlated with  observed
changes in atmospheric boundary layer
wind regimes (Dayong et al. 1988).i In'the

tropical eastward on-set of .an:El.Nifio

event, positive SST anomalies directly
result in surface wind convergence and
associated precipitation fields (Barnett et
al. 1991). Barnettetal. (1991) caveatthat

the direct effect of heat exchange from the

ocean. to the atmosphere is relatively
weak in forcing of the main.troposphere.
However, the. air-sea temperature

difference has a very important indirect

role in the thermodynamics. of
atmospheric - circulation: = the :low-level

surface wind convergence associated with -

the positive SST forcing provides critical
initiation of vertical mass and water vapor
flux above the planetary boundary layer

(PBL), thus determining where heat from

condensation in the troposphere occurs.
This tropospheric heat of condensation is

‘estimated to be four times greater than



sensible heat flux from the ocean into the
lower PBL, but its positioning is tied to the
positive SST anomaly feedback.

Selective subtropical to global scale
temperature modifications result at the
" hemispheric scale from Hadley circulation
of net poleward energy flux, and the
Hadley circulation of this energy flux is
largely forced by the addition of low
latitude surface latent heating (Palmén
and Newton 1969; Min wei and Dayong
1988). On the scale of tropical Kelvin
wave processes in the eastern Pacific,
Hendon and Salby (1996) conclude that
convective: disturbances “can be
understood as the propagating response
to transient heating that is localized.”
Using numerical simulations, Wendell
(1988) also found that even midlatitude
SST warming significantly impacted
cyclogenisis in boundary layer interaction

with cyclones, via increasing planetary

boundary layer (PBL) "convergence and
redistribution of surface heat to the
midtroposphere....” Jacobs et al. (1994)
have observed high-latitude SST
anomalies across the North Pacific of the
same magnitude and temporal-spatial
extent as those in equatorial latitudes
during El Nifio events. Despite relatively
minor magnitudes of positive SST
anomalies (i.e., compared to magnitudes
of typical frontal inversions in the

atmosphere), the microscale effects of

converging low-level moist air also
contribute to further destabilizing of the
PBL (Stull 1988). Collectively, these low-
mid latitude dynamic processes thus have
the potential to re-define higher latitude
storm tracks, primarily as a result of mean
zonal temperature field modification (Lee
and Mak 1996). ‘

'V Proposed

Ocean-Atmosphere |
Conceptual Model

Fig. 6 is a global map of sea level
constructed from TOPEX/ POSEIDON
altimeter data acquired in April 1996. The
positive SSH anomalies of > 3 cm over
the eastern Pacific, in both the northern.
and southern hemispheres, have a
structure consistent with that expected for
an oceanic Rossby wave crest: the
positive SSH anomaly gradually curves
from mid-high latitude far eastern Pacific
coastal boundaries - towards western
Pacific tropical latitudes. Positive SST
anomalies in Fig. 4 have similar structure
to that of the positive SSH anomalies in
Fig. 6. These two positive anomaly
structures are directly associated, and the
mechanism responsible for this correlated
structure is the latitudinal variation of

- oceanic Rossby waves initiated nearly

simultaneously along the eastern
boundary of the Pacific (Chelton and
Schlax 1996). These latitudinally
dependent oceanic Rossby waves: are
thought to be initiated by passage of
coastally trapped, poleward propagating
baroclinic oceanic Kelvin waves. Oceanic
Kelvin waves have been observed in
current meter and hydrographic data
along the west coast of South America
(Smith 1978; Huyer 1980), and Dorman
(1985) has presented evidence of

* trapped, internal oceanic Kelvin wave

existence along the coast of California.

Coastally trapped, oceanic Kelvin waves,
propagating poleward along the west
coasts of North and South America, are
balanced directly along the coast by
pressure gradient and Coriolis forces
(Dorman 1985). Allowing poleward
propagating, trapped oceanic Kelvin
waves originating off Central America to



reach the ‘Gulf of Alaska, this relatively
undamped ageostrophic force balance is
directly analogous to trapped barrier jets
in the atmosphere. Trapped oceanic
Kelvinwaves decay exponentially offshore
over .a-length scale. equivalent to. the
Rossby: radius of deformation. The
initiation .of a westward - propagating
oceanic Rossby wave by .a trapped,
poleward . propagating oceanic Kelvin
wave js illustrated in Fig. 8. Because of
the "B-effect" of latitudinal variation of the
Coriolis - -parameter,. .SSH._ - anomalies
associated . with coastal - Kelvin waves
propagate westward. as oceanic Rossby
waves. - As time elapses and- trapped,
oceanic. Kelvin waves  continue to
propagate poleward. and oceanic Rossby
waves are initiated at mcreasmgly hlgher
Iatltudes S

The phase delay in the lnltlatlon of
oceanic Rossby waves at higher [atitudes
contributes to the increasing lag of more
poleward Rossby wave initiation." Also,
the phase speed of oceanic Rossby
waves decreases rapidly with increasing
~ latitude at midlatitudes (Fig. 9)..
two factors result in. wave crests and
troughs that are approximately symmetric
about  the equator, as previously
discussed in terms of the positive SST
and SSH anomaly symmetry iin Figs. 4
and 6. The associations presented in the
previous section suggest the potential
atmospheric forcing effects that this
oceanic Rossby wave crest-front may
have : on ' eastern Pacific organized
precipitation processes: In summary, this
ocean-atmosphere interaction is linked by

geographically focused boundary layer

latent heat flux that is selectively forced by
the structured, positive SST patterns
associated, with oceanic Rossby waves.
Could this selective enhancement of

These
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upstream precipitation: along preferential

storm tracks have resulted in heavy, post
El Nifio west coast precipitation (Figs. 2-3,
8, and 10)?

A simple simulation of trapped oceanic

Kelvin and- Rossby wave propagation
along the North American west coast was
developed to further study the plausibility
of: this conceptual model. ‘A constant
phase speed of 50 cm/s was used.for
poleward propagating trapped, -oceanic
coastal - Kelvin® .waves propagating
poleward along the west coast of Central
and North. America. Observed Pacific
oceanic Rossby wave phase speeds; from
Chelton and Schlax (1996), were selected
for use in this simulation (Fig. 9). Results
from this ' simulation;" ‘using these
component oceanic Kelvin and Rossby
wave properties, are illustrated in Fig. 11:
These simulation. results reveal. critical
details regarding the organized oceanic
Rossby wave crests observed in nature.
For example, a localized minimum in'the
westward propagation distance (betwéen
~ 15°N, 102-121°W) - clearly appears
between 100-250 days after Kelvin wavés
propagate poleward of 8° N latitude.” This
is primarily a result of the orientation "of
the Central American: coastline. This
coastal effect results in Rossby waves at
higher latitude later time-steps to actually
exceed the westward longitudinal position
achieved by previously initiated lower
latitude Rossby waves. This simulation:
result is extremely useful in explaining
TOPEX/POSEIDON positive SSH
anomaly patterns off the west coast ‘of
Central Amenca in Fig.: 12.

Oceanlc Rossby wave crests |dent|f|ed in
TOPEX/POSEIDON data, between April
1994-February 1995 and December 1994-
May 1996, were tracked from ~ 14°N to



30°N (Fig. 11). These two dominant wave
crests coincided in time, respectively, with
the abnormally wet 1994-1996 winter
seasons experienced in the Western U.S.
The mean, estimated oceanic Kelvin wave
‘phase speeds for the 94/95 winter case
was ~ 38.3 cm/s (over a 294 day period),
while for the 95/96 winter case, it was
estimated to be ~ 51.0 cm/s (over a 392
day period).
oceanic Kelvin phase speed for both
cases was ~ 44.6 cm/s (within 12% of the
assumed Kelvin phase speed of 50 cm/s,
selected for use in the Fig. 11 simulation
result). The estimated phase speed
differences may possibly be attributed to
a change of the initial phasing of the two
analyzed oceanic Kelvin/Rossby wave
events (an ~ 13 cm/s difference in 1994-
1996 freely propagating oceanic Kelvin
wave phase speed would require

substantial changes in ocean density

structure). Regardless of the specific
reason for the differences, this raises
critical questions concerning the seasonal
positioning of dominant oceanic Rossby
wave crests.

Did more southeastward positioning of
estimated 94/95 winter season dominant
oceanic Rossby wave front (the 350-400
day Rossby crest solution in Fig. 11) result
in selective aiming of more preferential,
heavy precipitation storm tracks into
southern California? Similarly, in the
following 95/96 winter season, did a more
northwestward positioned dominant
oceanic Rossby wave crest (the 500-600
day Rossby crest solution in Fig. 11)
provide sufficient forcing to result in more
westward positioned, transient “pineapple
express” storm tracks to intersect the
North American west coast further north,
toward Oregon and Washington (Figs. 2-
3,and 8)? A multitude of other questions

The combined, mean .
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remains

regarding these simulation
results, in conjunction with our increasing

‘empirical knowledge of ocean science via

observational data from sources such as
the TOPEX/POSEIDON project.  For
example, if the conceptual model

.proposed here is realized in nature, what

are the implications regarding

precipitation/storm track re-adjustment 2-6

years following the demise of a significant

El Nifio event in the eastern Pacific (for
example, in the 800-2400 day Rossby
crest solutions in Fig. 11)? Without the

oceanic Kelvin-Rossby wave conceptual

model component described above (Figs.:
8 and 11), it is difficult to make concise

analyticinferences regarding the origins of
observed sea surface anomaly patterns,

and potentially our west coast heavy

winter precipitation patterns, too.

V]l Conclusion

Our understanding of large to local scale
coupled ocean-atmosphere processes is
far from complete, but knowledge is
accumulating, for example, from studies
such as those conducted by the Climate
Diagnostic Center to examine the role of
air-sea interactions in climate and climate
change. Results from one of these
studies illustrate the significant upper-
level ocean (surface to 400 m) thermal
structure interannual to decadal variability
that is known to occur in the central North
Pacific (Fig. 13). Westward propagating
oceanic Rossby waves, capable of
significantly altering thermal properties in
this slab of surface layer water, have now

- been observed throughout much of the

world's oceans (Schlax and Chelton
1994). The slow propagation speeds of
midlatitude oceanic Rossby waves, in
conjunction with associated SST
anomalies, and previously discussed



inferences concerning possible resultant
‘atmospheric.responses, suggest that a
significant, and difficult to..forecast
relationship between oceanic
Kelvin/Rossby waves and North American
west coast weather patterns may exist.
This relationship - may be. a- critical
component leading to unusual interannual
west coast weather pattems’. However,
the results of this analysis are not
conclusive, and do not constitute absolute
proof of the hypothesized links between
oceanic Rossby waves and atmospherlc
processes

From prellmlnary inspection, oceanic
Rossby wave forcing of the atmosphere
appears unable to produce continuous
storm  track - modification, either
intraseasonally (time scales of 10-100
days) or interannually. Other dominant,
larger scale synoptic-hemispheric scale
processes often diminish the signal level
"of -oceanic Rossby  wave forcing
(Trenberth . 1997). However, . .if the
associative links, suggested in this
Technical Memorandum (ie., significant;
positive SST anomalies with geographical
patterns organized by oceanic

Kelvin/Rossby - 'wave processes -

intersecting upstream trans-Pacific jet
stream tracks) reach a critical: feedback
threshold; then it may be possible to make
the following inferences. ' Meridionally
skewed crests and-troughs: of dominant
“warm core, eastern Pacific oceanic
Rossby waves near the west coast of the
United States, particularly following - El
Nifio events transitioning into La Nifa
episodes, may be highly correlated with
the geographical distribution and intensity
of above normal, west coast winter
precipitation (Fig. 8). Thus, recognition of
this ocean system process, occasionally
resulting in transient resonant, phase-
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locking with atmospheric processes; may
significantly improve medium-long range
forecasting accuracy .of heavy seasonal
west coast precipitation interception. For
example, the mean 1996 Pacific  SSH
anomaly -pattern (Fig. 14) has evident
correlation with placement of significantly
above normal. December... 1996
precipitation (Fig.: 15). = Conversely,

. drought forecasts for the west coast may

also be improved — by anticipating: the
developrment of prolonged high pressure
ridging over, Washington, Oregon,:and
California. = This drought scenario may
result as the SST patterns associated with
oceanic Rosby waves steerabove-normal

. precipitation into .British- Columbia ;:and

Alaska (refer to Fig: 11 wave crest and
trough locations after 800 days).  Or,
perhaps west coast scenarios suggestive
of below-normai precipitation may also be
correlated . with cold SST patterns
associated with oceanic ‘Rossby wave
troughs (Fig. 16). For example, Fig: 17
places below-normal precipitation over
Washington and northern Oregon; aligned
along the upstream orientation of .a
dominant oceanic Rosshy wave trough in
Fig. 16. . SRR .

Regarding the consideration of oceanic
Rossby waves .in west coast drought
forecasting, mid Pacific ‘-model results
imply oceanic Rossby waves of -low-
latitude origin in association with El Nifio
events influence the.location of the
Kuroshio  Extension between 35-40?:N
(Jacobs et al. 1994). However, the role of
larger . scale ocean-atmosphere
processes: — such as the eastward
extension of a warm northerly Kuroshio
return current — may be more important to
North. American west coast. forecasting:
The cumulative potential west coast
meteorological and- hydrologic scenario



results - postulated in the previous
paragraph nonetheless suggest that
consideration of pronounced eastern
Pacific oceanic Rossby wave activity may
- be warranted. Organized oceanic Rossby
wave thermal forcing of the atmosphere
appears to be more of a microscale

influence, but over a sufficiently large and

consistent subregion. Repetitive tracking
of storms following northward along the
eastern U.S. are often linked to the

baroclinic zone established along the

coast, defined by contrasting cold
continental air over run by warmer, moist
marine air masses advected over the Gulf
Stream (Carison 1991). Although not
energetically capable of producing similar
extreme contrasts, eastern Pacific oceanic
Rossby waves may be instrumental in
establishing a much weaker yet still
analogous baroclinic atmospheric tracking
zone. Using this conceptual model,
forecasters may be more able to make
large-scale process inferences in sparse

. and/or remote data sets (Figs. 14-17).

What other existing, coupled conceptual
models do forecasters presently use to
explain the patterns in Figs. 14 - 177
Keeping in mind the billions of dollars in
west coast flood damage between 1994-
1996, it seems prudent to consider the
potential association/s proposed in the
multifaceted conceptual model introduced
above? ’

If this conceptual model is considered a
potential mechanism to partially explain
variations in heavy west coast
precipitation patterns, how do we
systematically make the necessary
associations suggested in this Technical
Memorandum? Slow oceanic Rossby
wave propagation speeds (on the order of
10 cm/s) facilitate interrupted analysis and
tracking, for example, when other

operations take prolonged precedence,
and/orrelevant analysis data availability is
temporarily limited. ©  Observing the
presence of dominant oceanic Rossby
waves may entail a consistent, periodic
analysis of remotely sensed eastern
Pacific SST and SSH anomalies, in
conjunction with possibly. correlated
DMSP microwave precipitation and
preferential  GOESS-9 water vapor
moisture advection tracks from low to mid
latitudes. Drifting buoy data is another
source of supplementary, in situ SST
anomaly observations to correlate with
SSH data.

This integrated approach is probably the
only presently available operational
technique to wuse in conceptually
identifying the potential occurrence of
pronounced oceanic Rossby wave activity
at the field office level. Because of
oceanic Rossby wave process subtleties,

. development of a working conceptual

model that incorporates key evolution and
structure details will be necessary before
predictive skills can be evolved (McGinley
1986). ~

TOPEX/POSEIDON altimeter data
capable 'of resolving oceanic
Kelvin/Rossby waves has only been

“available since October 1992 (Fu et al.

1994). This initial date of TOPEX/
POSEIDON data availability occurred in
the midst of the last prolonged EI Nifio
episode, extending over a 5 year period
between 1990-1994 (Halpert et al. 1995).

- As a result, we still have much to learn

about what this new type of data can tell
us regarding ocean-atmosphere
interactions, both preceding and following
El Nifio episodes. Many questions remain
to be answered regarding the relevancy of
this forecast problem. For example, are



oceanic
deterministic? - Do the .effects of zonal
atmospheric Walker circulations over the
‘Pacific play a more .critical role than
oceanic Rossby and : Kelvin waves in
selectively altering $SSTs (Liu 1997)? Yet,
as Trenberth.(1997) suggests, a key step
in predicting interannual ENSO cycle
onset and evolution entails antecedent
identification of how oceanic Kelvin and
Rossby waves redistribute warm, tropical
water, in concert wnth atmospherlc wind
'forcmg

Answers to the plethora of remaining
qguestions will be discovered as we
cumulatively increase our understanding
over the full range of significant ocean-
atmosphere feed-back . mechanisms
occurring across the Pacific Ocean, as
well as over the global scale ocean-
atmosphere system. Hopefully,” the
analysis discussed in this Technical

Memorandum demonstrates that our -

understanding of nonclassic. North
American west coast applied meteorology
can. be advanced significantly via
forecaster's conceptual recognition, and
- reporting of potentially significant,
coupled, -upstream-offshore.- feédback
processes. Conversely, it i clear that
identification. of these complex’ earth
system processes will necessitate an
interdisciplinary approach, both in terms.of
professional training (Mass 1996), and
operational interaction. This type of
approach to improving North American
west coast forecasting will accelerate the
conceptual  intersection. of valuable
functional knowledge  in, but by no'means
“limited to, oceanography, geodetic and
thermographic remote sensing, terrestrial
hydrologic implications, as well as the
atmospheric sciences. However, in. this
endeavor, .it is also . evident, from

Kelvin/Rossby waves
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previously detected systernatic satellite
observation data errors, that remote
sensing of subtle but critical ocean-
atmosphere interactions will require
ground-truth calibration with, for example
fong term in SItu buoy data
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Fig. 1. GMS image of Typhoon Bart recurving northeastward off the northeast coast of
Luzon on May 15, 1996, with upper level storm outflow entraining into the mid-latitude
westerlies (image courtesy of the Institute of Industrial Science, University of Tokyo,

Japan).



// V \K\
N

PERCENT OF NORMAL PRECIMTATION
183L9595 Wef Fesson
Dot ber 71984 —Apnl 1985

Fig. 2. Concentration of 200% above normal Winter 1994-95 wet season
precipitation anomalies focused over southern coastal California (from Halpert et
al. 1996).
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Fig. 3. November-December Winter 1995 > 100 mm precipitation anomalies over
Northwestern Oregon and Western Washington, using departures from 1961-90 base
period means (from Halpert et al. 1996).
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Fig. 4. Composite northern hemisphere SST and precipitation anomalies positionally
correlated, and indicating the presence of a Spring-Fall 1995 west-northwest shifting -
positive anomaly structure in the eastern Pacific (from Halpert et al. 1996).
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Fig. 5. The United States Navy Fleet Numerical Oceanographic Center (FNOC) has
oceanographic programs dependent on the Navy Operational Global Atmospheric
Prediction System (NOGAPS), and one of these programs provides ocean current
predictions (Hogan and Rosmond 1991; Heburn and Rhodes 1987). The plot displayed
above is a NOGAPS surface Pacific Ocean currents analysis for May 1996 (courtesy of
Steven M. Tayior, from the U.S. Naval Postgraduate School, Monterey, California).
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Fig. 6. Ten days of consecutive TOPEX/POSEIDON data are used to generate each of the sea surface height anomaly
images included in this paper (images originally produced at the Jet Propulsion Laboratory (JPL) in Pasadena, California using
software codeveloped with the University of Colorado, Boulder). Time shown at the top of this image, in a “yy/mm/dd” format,
represents the “center-time” of a 10 day observation blend periods. The center time of this image was April 22, 1996. The
dominant, positive eastern Pacific SSH anomalies have axial symmetry similar to positive SST anomalies in Fig. 4. This
symmetry reelected across the equator results from the intersection of individual dominant oceanic Rossby waves along an
organized Rossby wave front.
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for illustrative clarity. For example, oceanic Kelvin waves actually siope directly away from
the west coast in a non-gausian manner. There is also more of a continuous transfer
process than illustrated, as Kelvin waves dissipate offshore and transition directly to
oceanic Rossby waves.



Observed Oceanic Pacific Rossby Wave Phase Speed, from Chelton and Schlax (1996)
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Fig. 9. Observed northem hemisphere Pacific oceanic Rossby wave phase speeds (cm/s),
from Chelton and Schiax (1996). ‘
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Fig. 10. December 1995 mean tropospheric temperature anomalies. Positive temperature
anomalies, derived from microwave sounding data, occur along a track similar to eastern
Pacific oceanic Rossby wave fronts (from Halpert et al. 1996; original data contributed by
the University of Alabama at Huntsville).
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Fig. 12. Relative Pacific Ocean Rossby wave front speed minima off the coast of Central
America evident in TOPEX/POSEIDON February 2, 1995 data (provided by JPL).



Fig. 13. Upper ocean (surface - 400 m) interannual-decadal SST anomaly variability observed in the eastern Pacific
between 30N-42N, 176W-144W (courtesy of the National Climatic Data Center (NCDC)).
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Fig. 14. Mean SSH anoralies for 1996 indicating presehce of organized oceanic Rossby
wave fronts across the Pacific in the northern and southern hemispheres (provided by the
NOAA Laboratory for Satellite Altimetry).
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Fig. 15. December 1996 winter west coast precipitation anomalies, with significant
coincidence of oceanic Rossby wave front alignment in fig. 14 to the > 300 precent

above normal precipitation track reaching into southwestern Montana (courtesy of
NCDC).
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Fig. 16. 10 day mean TOPEX/POSEIDON SSH anomalies centered around January 15,
1993, during the 1992-93 winter season, with relative oceanic Rossby wave front trough
evident in the eastern Pacific (image provided by JPL).
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The major components of NOAA regularly produce various types of scientific and technical

information in the following kinds of publications.

PROFESSIONAL PAPERS--important defini-
tive research results, major techniques, and
special investigations.

CONTRACT AND GRANT REPORTS---
Reports prepared by contractors or grantees
under NOAA sponsorship.

ATLAS--Presentation of analyzed data gen-
erally in the form of maps showing distribution
of rainfall, chemical and physical conditions of
oceans and atmosphere, distribution of fishes
and marine mammals, ionospheric conditions,
etc.

TECHNICAL SERVICE PUBLICATIONS --
Reports containing data, observations,
instructions, etc. A partial listing includes data
serials; prediction and outlook periodicals;
technical manuals, training papers, planning
reports, and information serials; and
miscellaneous technical publications.
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the like.
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