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1. INTRODUCTION 

 
On 21 February 2005 Presidents’ Day, three tornadoes and several funnel clouds occurred 
in the Sacramento valley, including two weak (F0*) tornadoes in the Sacramento, CA 
metropolitan area. The Southport, CA and Natomas, CA tornadoes caused nearly one 
million dollars of damage to residential and commercial property.  Amazingly, there were 
no fatalities or serious injuries despite the amount of flying debris, air-borne projectiles, 
toppled trees, and an over-turned semi-trailer truck. Photographic evidence, and an 
examination of radar data post facto, confirmed there was a third tornado near Dunnigan, 
CA, in the rural portion of Yolo County (Fig. 1). 

 
Compared to the area east of the Rocky Mountains, tornado occurrence over the western 
United States is much less frequent. However, climatological studies reveal certain sub-
regions throughout the west where there is a significant increase in tornado occurrence.  
Two of the regions are in California: the Los Angeles area, and the Central Valley of 
California comprising the Sacramento and San Joaquin Valleys.  Comparative 
climatological studies show that most California tornadoes are relatively weak (F0 or F1 
intensity) and have relatively short path lengths, with median values 0.62 miles (1.0 km) 
long and 43 yards (39.3 m) wide compared to 4 miles (6.4 km) long and 170 yards (155.4 
m) for Iowa tornadoes.  Also, the vast majority of California tornadoes occur during the 
cool season and primarily between 1 PM and 3 PM local time (Blier and Batten 1994). 
 
Many of the tornadoes in the Central Valley of California are associated with synoptic 
patterns that create favorable buoyancy and shear profiles conducive for supercell storms.  
Initially, the pattern was described in Monteverdi et al. (1988) and later documented with 
other tornadic storms in the state by Monteverdi et al. (2001 and 2003).  However, there 
are also many California Central Valley tornadoes that do not form with isolated 
supercells.  Nonsupercell tornadoes in California have been documented along horizontally 
sheared fronts, intersections of bow echoes, or when isolated nonsupercell storms intercept 
pre-existing vertical vorticity from topographic or solenoidal circulations found along 
outflow or sea breeze boundaries.  Monteverdi (et al. 2003) believes that these 
nonsupercell tornadoes probably account for a relatively large percentage of tornadoes 
across California. 
 
 
 

*In 2005, the National Weather Service (NWS) used the longstanding Fujita (F) Scale to 
rate tornado damage.  In the spring of 2007, the NWS adopted the Enhanced-Fujita (EF) 
Scale.  This change did not affect the findings of this study. 
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Figure 1 
Locations and times of tornadoes, intensities and paths. Tornado intensity (F0 or F1) shown 

with path and times of occurrence (Z or UTC).  See text for details. 
 
This study will consider the meteorological factors that resulted in a rare weather event that 
was highly publicized by the local media.  Low level shear and buoyancy parameters on 21 
February 2005 were typical for northern California tornadoes (Monteverdi et al. 2003).  
However, this event was unique in that thunderstorms moved westward due to deep east to 
southeast flow to the north of a closed upper-level low pressure center off the California 
coast.  Radar data from the Weather Surveillance Radar-1988 Doppler (WSR-88D) located 
in Davis, CA (KDAX) will be examined to illustrate the locations and intensities of the 
weather phenomena that occurred on that day. 
 
This paper will discuss the synoptic situation that resulted in the development of low-
topped supercells in the Sacramento valley on 21 February 2005 in section 2.  An 
examination of radar imagery from the WSR-88D in Davis, CA (KDAX) for the 
Southport, CA, Natomas, CA and Dunnigan, CA tornadoes will be presented in section 3.  
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Included in section 3 is a discussion on supercell movement and the hodographs for the 
Natomas, CA and Dunnigan, CA tornadoes.  Section 4 is a summary and offers 
recommendations for operational forecasters. 
 
2. SYNOPTIC SITUATION 
 
The majority of California tornadoes are associated with F0/F1 damage and occur during 
the winter and spring months when tropopause heights are low (Blier and Batten 1994), 
and when certain low-level positive wind shear and buoyancy parameters are present 
(Lipari and Monteverdi 2000, Monteverdi et al. 2003).  Northern California tornadoes 
typically occur in a favorable meteorological environment as shown in Figure 2.  The 
location of the middle and upper level trough causes west to southwest winds that are 
perpendicular to the coastal range mountains.  This produces a lee-side trough in the 
Central Valley.  East of the lee-side trough, topographic channeling of the winds creates 
surface southeasterly flow which contributes to a favorable shear profile and strongly 
anticyclonically-curved hodographs.  Instability is augmented by mid-level cold air 
advection from the upper-level trough and low-level warm air advection from the 
southeasterly winds north of the synoptic cold front and/or differential heating (Monteverdi 
and Quadros 1994).  The supercell thunderstorms that form in this environment have been 
called low-topped or miniature supercells and have also been observed in many mid-
latitude locations (Wicker and Cantrell, 1996). 
 
For the Presidents’ Day 2005 northern California tornadic event, a closed off mid- and 
upper-level vorticity maximum was located off the California coast for several days.  This 
weather pattern resulted in an unstable air mass over northern California.  The Lifted Index 
from the 1200Z 21 February 2005 Oakland, CA (KOAK) sounding was minus 1.2.  The 
flow around the closed off mid- and upper-level vorticity maximum advected a subtropical 
moisture plume and resulted in precipitable water (PW) values near eight-tenths of an inch 
or 171% of normal over the area (Fig. 3).  Upward vertical motion across northern 
California was aided by a vorticity lobe rotating northeast around the offshore vorticity 
maximum and by mass divergence in the left exit region of the upper level jet. 
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Figure 2 
Schematic showing the location of major synoptic features associated with tornadoes in 

the central valley of California (from Monteverdi et al.  2003). 
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Figure 3 
1200Z 21 February 2005 Oakland, CA (KOAK) Sounding.  Wind barbs (far right) 

illustrate deep southeast flow (height in km and thousands of feet). 
 
At the surface, an occluded front rotated northeast into the interior of northern California 
and provided a well defined boundary for the development of thunderstorms.   A mid-level 
dry intrusion arced southeast to northwest into the southern Sacramento valley in the 
proximity of the occluded front. Differential heating caused a direct circulation in which 
warm air rises and cold air sinks, as cooler air from the cloud-covered areas north and east 
of the mid-level dry intrusion, flowed toward warmer air and lower pressure in the cloud-
free areas immediately north and east of the occluded front (Fig. 4).  The direct circulation 
resulted in an increased pressure gradient and produced a solenoidal circulation (Wolf 
2002) believed to be an important factor in the generation of low-level shear and the 
initiation of severe convection in the Sacramento valley on 21 February 2005.  In western 
Sacramento and Yolo counties, the solenoidal circulation caused light north winds at the 
surface, but southeast winds over eastern Sacramento County.  This significantly increased 
the surface convergence and low-level wind shear over the western portion of Sacramento 
County from 2000Z to 2100Z, less than an hour prior to the Southport, CA and Natomas, 
CA tornadoes.  The Local Area Processing Analyses (LAPS) surface streamline and wind 
analyses (Figs. 5a and 5b) illustrate the increasing surface convergence. 
 
The 1200Z 21 February 2005 ETA model BUFKIT forecast wind profile for Sacramento 
International Airport (KSMF) at 2100Z illustrates the low-level veering of winds from 
north to southeast, within the boundary layer, and deep southeast flow aloft.  The forecast 
of increasing southeast winds over 30 knots up to around 2 km increases the 0-2 km shear 
to 30 m/s (15 m/s/km) (Fig. 6).  Deep southeast flow is atypical from the west-southwest 
flow in the lower to middle troposphere that is typically associated with tornadic storms in 
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the Central Valley of northern California.  Instead of a strong veering southeast to west-
northwest wind profile and eastward moving storms the deep southeast flow resulted in 
strong speed shear and westward moving storms. 
 
 

 
 

Figure 4 
2240Z 21 February 2005 GOES West Water Vapor Satellite Imagery 2100Z MSL Pressure 

Analysis (tan) and Surface Frontal Analysis (blue). 
 
The severe convection occurred on the “cool side” of the surface boundary where the 
Lifted Condensation Level (LCL) was low and moisture was pooling. Johns et al. (2000) 
found that low LCL heights and moisture pooling are common factors for tornadoes in the 
north central Great Plains.  The 1200Z 21 February 2005 ETA model BUFKIT forecast 
sounding for Sacramento International Airport (KSMF) for 2100Z indicated a LCL of 980 
hPA (around 300 meters), and the METAR data at 2100Z showed the highest dewpoint 
temperature, 56 degrees F (13.3 degrees C), at Sacramento International Airport (Fig.  7). 
 
Markowski et al. (1998) found that the greatest tornado potential occurred from 10 km on 
the warm side of a boundary to 30 km on the cool side of the boundary, and the more 
shallow the boundary, the further into the cold air the tornado potential existed.  Local 
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Area Processing Analyses (LAPS) streamline and wind analyses from 2000Z to 2100Z 
show a surface convergence zone moving from the eastern portion of Sacramento County 
into the northwest corner of the county, maximizing low level convergence near KSMF 
(Figs. 5a and 5b).  Note the wind shift and rising pressure at Sacramento Executive Airport 
(KSAC) at 2200Z as the surface boundary moved from southeastern Sacramento County 
into the northwestern portion of the county.  Also note the severe thunderstorm and 
tornado/funnel cloud present weather symbols on the KSMF weather observation (Fig. 8). 
 
 

 
 

Figure 5a 
2000Z 21 February 2005 LAPS Surface Wind (black) and Streamline 

Analysis (orange).  Note meteorological col (saddle) over central 
Sacramento County indicating developing convergence boundary. 
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Figure 5b 
2100Z 21 February 2005 LAPS Surface Wind (black) and Streamline 

Analysis (orange).  Note streamline convergence vicinity of Sacramento. 
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Figure 6 
1200Z ETA BUFKIT Forecast for 2100Z 21 February 2005 for 

Sacramento, CA (SAC). 
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Figure 7 
2100Z 21 February 2005 METAR Observations and LAPS Surface Dewpoint 

Isodrosotherms (tan lines).  Note pooling of highest dewpoint temperatures west of 
Sacramento International Airport (KSMF) and Sacramento Executive Airport (KSAC). 
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Figure 8 
2200Z 21 February 2005 METAR Observations.  Note Present Weather symbol 

of Tornado/Funnel Cloud at Sacramento International Airport - KSMF. 
 

Craven et al. (2002) found that tornado probability increases with increasing values of 0-1 
km shear and decreasing LCL heights.  Values from the 1200Z 21 February 2005 ETA 
model BUFKIT forecast sounding for 2100Z at KSMF showed 0-1 km shear of 
approximately 29 knots (around 15 meters/second), and a LCL height of 980 hPA 
(approximately 300 meters).  Applying these data to the findings of Craven et al. (2002) in 
Table 1, the probability for a tornado was near 70%.  Although the Craven et al. (2002) 
study was primarily intended for Great Plains supercells with moderate to strong 
instability, it has some applicability because of the instability and development of 
supercells in northern California on this date.  Given favorable deep layer wind shear and 
adequate instability, forecasters can use this table to heighten their situational awareness 
for tornado potential. 
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Figure 9 
Craven et al. (2002) Probability of Tornado (study years 1973-1993) 
0-1 km Shear (knots) on x-axis and LCL (height in meters) on y-axis. 

 
Notice the 1200Z 21 February 2005 ETA model BUFKIT forecast hodograph for KSMF at 
2100Z indicated a storm motion to the north (from 194 degrees) and a 0-2 km helicity 
value around 220 meters 2/sec2 (Fig. 6).  The observed storm and forecast motions were to 
the west-northwest as a result of deep southeast flow.  The positive shear values would 
favor an environment conducive to cyclonically rotating updrafts. 
 
Surface winds from the northeast veering to the southeast and increasing significantly with 
height resulted in an anticyclonically-looping hodograph.  In their research of northern and 
central California tornadoes during the period of 1990-1994, Lipari and Monteverdi (2000) 
found that the hodographs for tornadic storms in northern and central California often 
showed marked anticyclonic loops with strong veering of wind shear vectors with height.  
However, compare the 1200Z 21 February 2005 Oakland, CA (KOAK) sounding 
hodograph (Fig. 10) with the composite hodographs for F1/F2 tornadoes (Fig. 11) 
observed in other parts of the country (Davies 1993).  Note the “loop” for 21 February 
2005 is mostly contained in the in the upper-left quadrant of the hodograph, and is similar 
to the 1200Z 21 February 2005 ETA model BUFKIT forecast hodograph for KSMF at 
2100Z (Fig. 6).  The differences between the composite hodograph in Davies (1993) and 
the hodographs from 21 February 2005 are the result of light north-northeasterly surface 
winds seen in the METAR observations prior to the tornadoes, and the strong southeast 
flow aloft. 
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Figure 10 
1200Z 21 February 2005 Oakland, CA (KOAK) Hodograph 

showing anticyclonically-curving loop. 
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Figure 11 
Composite Hodograph for F1/F2 Tornado Cases (Davies, 1993). 

 
Local Area Processing Analyses  (LAPS) from 2000Z on 21 February 2005 quantitatively 
illustrated the location of the axis of instability and moisture convergence in the southern 
Sacramento valley (Figs. 12a- 12d).  These figures indicate the tornadic activity that day 
occurred in a very unstable air mass and along the gradient of Convective Available 
Potential Energy (CAPE), surface moisture advection and moisture flux divergence, and 
not necessarily in the center of the highest value.  Research by Broyles et al. (2002) Johns 
et al. (2000) and Thompson and Edwards (2000) discussed environmental conditions and 
locations of tornadoes and have noted similar findings. 
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Figure 12a 
2000Z 21 February 2005 LAPS Surface Computed Lifted Index (LI) with tornado 
locations and times of occurrence (UTC).  Note axis of most unstable air west of 

Sacramento. 
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Figure 12b 
2000Z 21 February 2005 LAPS CAPE (j/kg) with locations and times of 

occurrence (UTC).  Note axis of largest values of CAPE west of Sacramento. 
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Figure 12c 
2000Z 21 February 2005 LAPS Surface Moisture Advection (g/kg/12 hrs) 
with tornado locations and times of occurrence (UTC).  Note axis of surface 

moisture advection west of Sacramento. 
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Figure 12d 
2000Z 21 February 2005 LAPS Moisture Flux Divergence (g/kg/12 hrs) with 

tornado locations and times of occurrence (UTC).  Negative values indicate moisture 
convergence and positive values moisture divergence.  Note the gradient of values in 

the vicinity and west of Sacramento. 
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3.  RADAR IMAGERY 
 
Radar imagery from the WSR-88D, Doppler radar located in Davis, CA (KDAX) was used 
to ascertain the time and location of the weather events on 21 February 2005.  Radar 
analysis will be divided into 3 parts: the Southport, CA tornado, the Natomas, CA tornado, 
and the tornado near Dunnigan, CA. 
 
All radar systems have inherent problems which make tornado detection difficult, and at 
times impossible.  Smith (1996) and Burgess et al. (1993) discuss the problems of tornado 
detection by radar. Short-lived or very small circulations and vortices may go undetected 
due to the WSR-88D scan strategy, i.e. the time in between low level radar scans, distance 
from the radar, beam height, and beam resolution. 
 
Because of the inherent limitations in radar data, forecasters need to closely monitor the 
storm environment.  Brady and Szoke (1988) recommended using the WSR-88D 
reflectivity products to monitor the position and movement of low-level convergence 
boundaries, and to look for small circulations along boundaries that show continuity, 
develop and strengthen vertically, and are located near developing storms.  Choy and 
Spratt (1994) used Echo Tops (ET), Vertically Integrated Liquid (VIL), and Composite 
Reflectivity (CR) products to observe rapid cell development along boundaries to detect 
waterspouts.  Since the formation mechanism for waterspouts is similar for landspout 
tornadoes, forecasters can apply this technique to detect non-supercell tornadoes.  Choy 
and Spratt (1994) did mention that this technique will not allow the forecaster to detect the 
circulation itself, and that the rotational signatures of these phenomena are often not 
resolvable by the WSR-88D. 
 
The System for Convective Analysis and Nowcasting (SCAN) available with the 
Advanced Weather Information Processing System (AWIPS) Display Two Dimensions 
(D-2D) provides NWS forecasters the capability to monitor certain environmental 
parameters and attributes of individual thunderstorm cells.  Although it does have its 
limitations (#), the cell table from SCAN allows forecasters to view trends of several 
parameters including maximum reflectivity, reflectivity height, VIL, hail size, etc., and 
displays alerts of a mesocyclone (MESO) and Tornado Vortex Signature (TVS) to assist 
forecasters in their warning decision making process. 
 
Tornado detection in low-topped supercell tornadoes can also be a challenge, especially if 
the radar echoes are distant from the radar site and beam overshooting is apparent.  Even 
with a low-topped supercell near the radar, the relative small circulation of the 
mesocyclone is not always easily identifiable as will be shown in subsequent sections.   

 
 
(#) According to NOAA’S NWS Meteorological Development Laboratory (MDL) web 
page concerning the Severe Local Storm (svrwx) and Large Hail Algorithm (polh) “…the 
algorithms are intended primarily to alert forecasters to sudden or unexpected severe storm 
development. Other considerations, such as three-dimensional storm structure, storm 
motion, and real-time spotter reports must be used to decide which storms actually warrant 
warnings, and where the warnings should be valid.” 
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However, monitoring the storm environment and applying the radar techniques of Brady 
and Szoke (1988), and Choy and Spratt (1994) may assist the forecaster in issuing more 
accurate and timely warnings. 
 
THE SOUTHPORT, CA TORNADO 
 
Southport, CA is a small residential community located about 1.5 nautical miles (2.8 km) 
south of the city of West Sacramento, CA.  An eyewitness stated that a tornado occurred 
between 2110Z and 2140Z (1:10 PM PST and 1:40 PM PST).  Radar imagery suggests that 
this tornado probably occurred around 2113Z (1:13 PM PST). 
 
Around 2100Z, KDAX radar detected two developing thunderstorms west and north of the 
Southport area.  Notice from the 2113Z reflectivity data (Fig. 13a) that the thunderstorm 
cell was located west of the Southport area.   Visible Satellite imagery and radar data 
suggested a flanking line of cumulus extended to the east-southeast of the parent 
thunderstorm.  Given the timing and location of the tornado report, it is believed the 
Southport tornado developed along the flanking line (Fig. 13a) and in the proximity of the 
surface convergence boundary (Fig. 5b). 
 
Storm Relative Velocity (SRM) data from the KDAX radar revealed a circulation at the 1.5 
degree elevation at 2113Z along the flanking line and just south of West Sacramento over 
the Southport area (Figs. 13a and 13b).  This circulation was evident on radar as it moved 
to the west-northwest through the 2135Z volume scan.  Although the weak circulation 
associated with the tornado apparently crossed Interstate 80 west of the City of Sacramento 
it apparently did not do any significant damage after it briefly touched down in the 
Southport area.  Damage to the Southport area was consistent with damage from a weak 
(F0) tornado.  The damage path was approximately one-quarter to one-half mile in length 
and up to 300 yards wide.  The damage was primarily to roofs of houses, although a large 
tree was toppled and several large tree branches fell on one residential property. 
 
Radar imagery suggested the Southport tornado was the result of low level horizontal 
vorticity becoming tilted and stretched vertically along the flanking line.  Markowski (et al. 
1998) and Rasmussen (et al. 2000) discussed how low level horizontal vorticity along 
boundaries is an important vorticity source for low-level mesocyclones.  It is believed the 
source of the horizontal vorticity for this storm was the surface boundary moving from the 
eastern portion of Sacramento County into the northwest portion of the county (Figs. 5a 
and 5b). 
 
Radar indicated the Southport, CA tornado was misocyclonic.  Fujita (1981) defined 
misocyclones as vortices in the horizontal plane with diameters less than 4 kilometers.  The 
findings from the Southport, CA tornado follow the work of Lipari and Monteverdi (2000) 
who studied the soundings and hodographs of 30 northern and central California tornadic 
thunderstorms from 1990-1994 and concluded that most F0 events were misocyclonic.  
Marquis et al. (2004) noted that previous work on misocyclones by Wakimoto and Wilson 
(1989) discussed how misocyclones are often found along boundaries with horizontal 
shearing instability, including the leading edge of outflow boundaries from thunderstorms 
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(Fujita 1981, Mueller and Carbone 1987), cold fronts (Wilson 1986), drylines, and lines of 
convergence associated with wind shifts (Wilson et al., 1992 and Crook et al., 1991).  
Carbone (1982), Wilson (1986), Mueller and Carbone (1987), and Wakimoto and Wilson 
(1989) discussed how it is common for the radar reflectivity data to show ‘S’ shapes or 
whirls along the boundary where a misocyclone is located, and how the strength of the 
rotation decreases with height.  Figures 13a and 13b from the Southport, CA tornado 
certainly suggest the presence of misocyclones along the boundary, although the 
reflectivity data do not indicate “S” shapes or whirls. This is most likely due to the fact that 
high resolution dual- and multi-Doppler radar observations were used in those studies 
compared to the observations from the KDAX WSR-88D used in the Southport, CA 
tornado. 
 
The 2113Z KDAX 1.5 degree Storm Relative Motion (SRM) product indicated the 
strongest rotation at approximately 1100 feet MSL (~300 m), which then became broad 
and diffuse at subsequent higher elevation angles. 
 
 

 
 

Figure 13a 
WSR-88D Davis, CA (KDAX) 2113Z 21 February 2005 Base Reflectivity 

Four Panel, 0.5 deg (UL), 1.5 deg (UR), 2.4 deg (LR), 3.4 deg (LL). 
Inverted red triangle indicates tornado location. 
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Figure 13b 
WSR-88D Davis, CA (KDAX) 2113Z 21 February 2005 Storm Relative 
Motion (SRM) Four Panel, 0.5 deg (UL), 1.5 deg (UR), 2.4 deg (LR), 

3.4 deg (LL).  Yellow circle indicates circulation. 
 
 
THE NATOMAS, CA TORNADO 
 
During and after the Southport, CA tornado, the thunderstorm to the northwest of Arco 
Arena (the Natomas area) intensified and reflectivity values approached 60 dBZ at 2129Z 
(2.4 degree elevation, 1950 feet MSL).  The thunderstorm maintained its intensity as 
shown in the subsequent reflectivity volume scan in figure 14a.  At 2135Z, Storm Relative 
Velocity (SRM) data showed a circulation just southeast of Arco Arena at the 1.5 degree, 
2.4 degree and 3.4 degree elevation angles (Fig. 14b).  This circulation moved to the west-
northwest into northwest Sacramento County and towards Sacramento International 
Airport (KSMF) and dissipated by 2201Z.  The 2145Z SRM 0.5 degree and 1.5 degree 
elevation angles indicated a circulation just east of Sacramento International Airport.  The 
circulation was observed at 850 feet MSL at the 0.5 degree angle and at 2340 feet MSL at 
the 1.5 degree angle (Fig 15b). 
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Using the following equation to calculate rotational velocity (Vr): 
 

Vr = │V(inbound) + V(outbound)│⁄ 2  (1) 
 

a rotational velocity of about 32 knots was observed between the maximum inbound and 
maximum outbound velocity couplet.    Given the storm’s distance from the KDAX radar 
and according to the 1.0 nautical mile nomogram from the WSR-88D Operational Support 
Facility (OSF) in Norman, OK, this would be characterized as a minimal mesocyclone. 
 
This radar-indicated circulation is believed to have been the precursor to the tornado that 
struck the Natomas area (Figs. 15a and 15b).  By 2155Z (1:55 PM PST), several severe 
weather reports from the Natomas area were relayed through the National Warning System 
(NAWAS) to the NWS Sacramento Forecast Office by the California Office of Emergency 
Services. 
 

 
 

Figure 14a 
WSR-88D Davis, CA (KDAX) 2135Z 21 February 2005 Base Reflectivity 

Four Panel, 0.5 deg (UL), 1.5 deg (UR), 2.4 deg (LR), 3.4 deg (LL) 
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Figure 14b 
WSR-88D Davis, CA (KDAX) 2135Z 21 February 2005 Storm Relative 
Motion (SRM) Four Panel, 0.5 deg (UL), 1.5 deg (UR), 2.4 deg (LR), 

3.4 deg (LL).  Yellow circle indicates mesocyclone. 
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Figure 15a 
WSR-88D Davis, CA (KDAX) 2145Z 21 February 2005 Base Reflectivity 

Four Panel, 0.5 deg (UL), 1.5 deg (UR), 2.4 deg (LR), 3.4 deg (LL) 
Inverted red triangle indicates tornado location. 
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Figure 15b 
WSR-88D Davis, CA (KDAX) 2145Z 21 February 2005 Storm Relative 
Motion (SRM) Four Panel, 0.5 deg (UL), 1.5 deg (UR), 2.4 deg (LR), 

3.4 deg (LL).  Yellow circle indicates mesocyclone. 
 
 
The NWS issued a tornado warning for northwest Sacramento county, southeast Sutter 
county and northeast Yolo county at 2147Z based on available radar imagery, earlier 
public reports of funnel clouds in the area, and forecast thunderstorm movement.  Though 
a tornado was confirmed a few minutes after the 2145Z radar imagery, the KDAX WSR-
88D did not resolve an increase in rotational velocity associated with the circulation. 
 
The Natomas tornado had a longer path length than the Southport tornado, about 1.5 miles 
to 2.0 miles long and up to 200 feet across.  The damage path was also discontinuous and 
suggested that the tornadic circulation either ascended/descended several times, or wind 
speeds decreased sufficiently and minimized wind damage. A site survey of the damage 
indicated the most extensive damage occurred to a portion of a residential area north of 
North Park Drive.  Most of the damage was to the terra-cotta roofing tiles on residential 
houses and wooded privacy fences. Along a walking path, a small area of natural grasses 
showed the evidence of a cyclonically rotating tornado. 



 

29 
 

Radar imagery suggested the Natomas tornado may have originated from the traditional 
“supercell cascade*” process outlined by Wicker and Wilhelmson (1993).  Typical for cool 
season California tornadic events the process from towering cumulus to a tornadic 
thunderstorm can occur relatively quickly, and in this case, took around one hour, from 
2050Z to ~2155Z (12:50 PST to ~1:55 PM PST).  This is characteristic of convective 
storms, rooted in the boundary layer, with steep lapse rates in a shallow layer under 
relatively low tropopause heights (Monteverdi et al. 2003).  Storm Relative Velocity 
(SRM) data showed the development of the mid-level mesocyclone around 2135Z (1:35 
PST, Fig. 14b), and then the development of the mesocyclone down to lower levels by 
2145Z (1:45 PM PST, Fig. 15b), or about 10 minutes prior to the first report of a tornado. 
 
The sequence of photographs of the Natomas tornado showed the characteristics of a 
tornado originating from the supercell cascade process (Figs. 16-19), rather than from a 
non-supercell.  The photos (Figs. 16-19) indicate tornadogenesis occurred from the 
development of a mid-level mesocyclone and rear-flank downdraft (RFD), the lowering of 
the mesocyclone, and interaction of the RFD and low-level shear (note the curved inflow 
tail) to produce the tornado (Monteverdi et al. 2001).  This is in contrast to the Southport, 
CA tornado where horizontal vorticity along a surface boundary was stretched and tilted 
upward by a rapidly developing thunderstorm updraft. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
*The supercell cascade leading to tornadogenesis is a conceptual model that starts with the 
development of the mid-level mesocyclone, advection of precipitation by the mesocyclone 
around the updraft area, development of a rear flank downdraft (RFD) simultaneous with 
the development of the mesocyclone at lower levels, and interaction of the RFD with the 
low-level shear to produce the low-level tornado cyclone and the eventual tornado. (From 
Monteverdi et al. 2001). 
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Figure 16 
Developing Natomas, CA tornado with Rear-Flank Downdraft 
(RFD) slot and base of wall cloud curving back to inflow tail. 

Looking west-northwest.  Photo from Sacramento Bee newspaper. 
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Figure 17 
Natomas, CA tornado showing the lowering of the rain free base, wall cloud and 
descending tornado.  Lighter area on left side of photo indicative of Rear-Flank 

Downdraft (RFD)and lowering of mid-level mesocyclone to lower levels.  Photo from 
Sacramento Bee newspaper. 
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Figure 18 
Photo of mature tornado looking approximately 3 to 4 miles 

west of Natomas, CA towards Sacramento International 
Airport (KSMF) on 21 February 2005.  Photo by Rob 

Cernohlavek.  From Sacramento Bee Newspaper. 
 

 

 
 

Figure 19 
Natomas, CA tornado during dissipating or rope stage near 

Sacramento International Airport (KSMF).  Photo from 
Sacramento Bee newspaper. 
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The persistent mesocyclone in the lower- to mid-levels of a thunderstorm differentiates a 
supercell from an ordinary thunderstorm.  Supercells have disparate storm motions due to 
the effect of the horizontal updraft-shear propagation component that is perpendicular to 
the shear vector, and parallel to the horizontal vorticity vector for left-moving supercells, 
and anti-parallel to the horizontal vorticity for right-moving supercells (Zeitler and 
Bunkers 2005).  Bunkers et al. (2000) developed a hodograph technique to predict 
supercell motion.  Applying Bunkers technique to the Natomas, CA tornadic storm for a 
vertical wind shear profile in the upper-left quadrant of the hodograph, a cyclonic supercell 
would move left of the mean wind (and slower) even though this would still be to the right 
of the vertical wind shear vector (Bunkers et al. 2000) (see hodograph, Fig. 20). 
 
 

 
 

Figure 20 
Hodograph for the Natomas, CA supercell using the KOAK Oakland, 

CA 12Z 21 February 2005 sounding.  VRM (VLM) is the predicted 
right-moving (left-moving) supercell motion from Bunkers et al. 

(2000).  Vobs is the observed supercell motion (from 135 degrees at 
6.7 m s-1or 13 kts).  Dashed line represents surface to 6 km shear.  

Vmw (red circle) is the surface to 6 km mean wind.  Units are 
meters/second. 
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It is interesting to note that Bunkers method did not predict the right-moving supercell 
motion very well.  This may be due to the fact that the hodograph plot was based on 
radiosonde data from the nearest upper air site, Oakland, CA (KOAK).  Radiosonde data 
have two substantial limitations with respect to forecasting severe convection, i.e. poor 
temporal and spatial resolution (Bunkers et al. 2000).  However, an effort was made to 
quality control the radiosonde data by using the WSR-88D Davis, CA (KDAX) VAD 
Wind Profile (VWP).  It is worth noting that the observed storm motion was ideal for the 
ingestion of storm relative helicity (Figs. 21a-21c). 
 
 

 
 

Figure 21a 
1800Z 21 February 2005 LAPS 0-3 km Helicity, m^2/s^2, (orange), 

LAPS 0-1 km AGL Wind (magenta), and LAPS 0-3 km AGL Wind (black). 
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Figure 21b 
2000Z 21 February 2005 LAPS 0-3 km Helicity, m^2/s^2, (orange), 

LAPS 0-1 km AGL Wind (magenta), and LAPS 0-3 km AGL Wind (black). 
 



 

36 
 

 
 

Figure 21c 
2100Z 21 February 2005 LAPS 0-3 km Helicity, m^2/s^2, (orange), 

LAPS 0-1 km AGL Wind (magenta), and LAPS 0-3 km AGL Wind (black). 
 
 
The hodograph in figure 20 was rotated clockwise 90 degrees to illustrate the similarity to 
the composite hodographs for F1/F2 tornadoes in figure 11.  Note the hodographs have 
marked anticyclonic loops that are typical for tornadic storms in northern and central 
California (Fig. 22). 
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Figure 22 

Hodograph for the Natomas, CA supercell, rotated clockwise   
90 degrees, using the KOAK Oakland, CA 12Z 21 February 

2005 sounding.  VRM (VLM) is the predicted right-moving (left-
moving) supercell motion from Bunkers et al. (2000).  Vobs is the 
observed supercell motion.  Dashed line represents surface to 6 

km shear.  Vmw (red circle) is the surface to 6 km mean wind.  
Units are meters/second. 

 
 
 
THE DUNNIGAN, CA TORNADO 
 
Other than radar and photographic evidence (Fig. 23) very little is known about the 
Dunnigan, CA tornado.  The tornado occurred in a very rural area, and consequently, there 
were no damage reports relayed to the Sacramento NWS Office. 
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Figure 23 
Photo of tornado near Dunnigan, CA on 21 February 2005. 

Photo from Sacramento Bee newspaper. 
 

 
Radar imagery indicated a weakening of the circulation of the Natomas tornado after 
2201Z (2:01 PM PST).  However, two thunderstorms (marked “A” and “B” in Fig. 24a) 
began to merge between Knights Landing and Yolo from 2217Z and 2227Z (2:17 PM and 
2:27 PM PST) as they moved into the more unstable environment (Figs. 12-12d).  
Thunderstorm intensity increased with reflectivity values over 60 dBz at the 0.5 degree, 
1.5 degree, and 2.4 degree elevations (1126 to 4670 feet MSL) as cell “B” neared Knight’s 
Landing.  Even though cell “B” had the highest reflectivity of the two cells, cell “A” to the 
east southeast of Yolo, CA exhibited BWER, hook echo, and mesocylone features that did 
not exist in cell “B” (Figs. 24a and 24b).  Also, divergence in the 0.5 degree SRM 
suggested weak outflow along the southern flank of cell “B”.   
 
With the initial tornado warning about to expire, the WFO forecaster had to make a new 
warning decision.  Without the benefit of additional real-time tornado reports after the 
Natomas and Southport tornadoes, it was uncertain if a tornado was still occurring.  
Lindsey and Bunkers (2005) discussed storm interaction and how tornadic storms can 
cease producing tornadoes during and immediately after cell merger, but then reorganize 
and re-intensify to produce additional strong tornadoes at a later time.  The decision was 
made to issue a severe thunderstorm warning, and mention in the text that “Severe 
thunderstorms can also produce tornadoes” to heighten public awareness. This warning 
was followed with another severe thunderstorm warning with similar wording as the storm 
moved closer to Dunnigan, CA. 
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Figure 24a 
WSR-88D Davis, CA (KDAX) 2222Z 21 February 2005 Base Reflectivity 
Four Panel, 0.5 deg (UL), 1.5 deg (UR), 2.4 deg (LR), 3.4 deg (LL).  Note 

location of cells “A” and “B” in lower right panel. 
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Figure 24b 
WSR-88D Davis, CA (KDAX) 2222Z 21 February 2005 Storm Relative 
Motion (SRM) Four Panel, 0.5 deg (UL), 1.3 deg (UR), 2.4 deg (LR), 

3.1 deg (LL). Yellow circle indicates mesocyclone. 
 
Animation of the radar imagery indicated the storm motion of the thunderstorm cells 
backed slightly from the initial storm motion of 135 degrees at 13 knots, to 125 degrees at 
12 knots as the merged storm approached Dunnigan, CA from the east.  This may have 
been the result of deviant supercell storm motion discussed by Zeitler and Bunkers (2005), 
or the rotation from the mid- and upper-level vorticity maximum discussed earlier.  
Animation of the KDAX VAD Wind Profiler (VWP) showed a subtle backing of the 
lower- to mid-level winds (approximately 5,000 to 26,000 feet MSL) about 30 minutes 
prior to the Dunnigan, CA tornado before there was a lack of detectable echoes on the 
VWP after 2248Z. 
 
The southern flank of the merged cell is the suspected area for tornadogensis.  This is due 
to the more unstable environment (Figs. 12a-12d), and the higher helicity values (Figs. 
21a-21c) to the south.  It is likely the storm ingested more streamwise vorticity which led 
to reorganization and re-intensification of the storm and an additional, possibly stronger, 
tornado.  Applying Bunkers technique to the Dunnigan, CA tornadic storm for a vertical 
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wind shear profile in the upper-left quadrant of the hodograph, a cyclonic supercell would 
move left of the mean wind (and slower) even though this would still be to the right of the 
vertical wind shear (Bunkers et al. 2000) (see hodograph, Fig. 25).  The observed storm 
motion was ideal for the ingestion of storm relative helicity (Figs. 21a-21c). 
 
 
 

 
 

Figure 25 
Hodograph for the Dunnigan, CA supercell using the KOAK 

Oakland, CA 12Z 21 February 2005 sounding.  VRM (VLM) is the 
predicted right-moving (left-moving) supercell motion from Bunkers 

et al. (2000).  Vobs is the observed supercell motion (from 125 
degrees at 6.2 m s-1or 12 kts).  Dashed line represents surface to 6 
km shear.  Vmw (red circle) is the surface to 6 km mean wind.  Units 

are meters/second. 
 
At 2310Z (3:10 PM PST), thunderstorm cell intensity increased to 60.5 dBZ about 3 
nautical miles east-northeast of Dunnigan at the 1.3 degree elevation angle (4050 feet 
MSL, figure not shown).  At this time, the Storm Relative Motion (SRM) 2.4 and 3.1 
degree elevation angles revealed a weak or minimal mesocyclone between 6000 feet and 
7700 feet MSL (figures not shown).  It is difficult to determine if the circulation reached 
the ground, but it is believed that it did not due to the lack of reports of tornado sightings in 
close proximity to heavily traveled Interstate 5. 
 
The SRM data show the mesocyclone lowering to the 1.3 degree elevation angle (Fig. 26b) 
at 2314Z (3:14 PM PST), and lowering to the 0.5 SRM elevation angle, approximately 
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1650 feet MSL, at 2322Z (3:22 PM PST, Fig. 27b).  Using the following equation to 
calculate rotational velocity (Vr): 
 
 Vr = │V(inbound) + V(outbound)│⁄ 2                               (2) 
 
a rotational velocity of about 50 knots was observed between the maximum inbound and 
maximum outbound velocity couplet.  Given the storm’s distance from the KDAX radar 
and according to the 1.0 nautical mile nomogram from the WSR-88D Operational Support 
Facility (OSF) in Norman, OK, this would be characterized as a strong mesocyclone.  Note 
on the corresponding reflectivity products (Figs. 26a and 27a) the location of the hook 
echo and/or tornado location relative to the storm.  
 
The mesocylone was evident at the knob-end of the reflectivity hook echo just east of 
Dunnigan, CA at 2331Z (3:31 PM PST, Figs. 28a and 28b).  Based on the radar evidence, 
it is believed the Dunnigan tornado occurred from around 2322Z (3:22 PM PST) to around 
2335Z (3:35 PM PST).  It is believed the photograph in Figure 23 was also taken within 
that time. 
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Figure 26a 
WSR-88D Davis, CA (KDAX) 2314Z 21 February 2005 Base Reflectivity 

Four Panel, 0.5 deg (UL), 1.3 deg (UR), 2.4 deg (LR), 3.1 deg (LL). 
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Figure 26b 
WSR-88D Davis, CA (KDAX) 2314Z 21 February 2005 Storm Relative 
Motion (SRM) Four Panel, 0.5 deg (UL), 1.3 deg (UR), 2.4 deg (LR), 

3.1 deg (LL). Yellow circle indicates mesocyclone. 
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Figure 27a 
WSR-88D Davis, CA (KDAX) 2322Z 21 February 2005 Base Reflectivity 

Four Panel,  0.5 deg (UL), 1.3 deg (UR), 2.4 deg (LR), 3.1 deg (LL) 
Inverted red triangle indicates tornado location. 
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Figure 27b 
WSR-88D Davis, CA (KDAX) 2322Z 21 February 2005 Storm Relative Motion 

(SRM) Four Panel, 0.5 deg (UL), 1.3 deg (UR), 2.4 deg (LR), 3.1 deg (LL). 
Yellow circle indicates mesocyclone. 
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Figure 28a 
WSR-88D Davis, CA (KDAX) 2331Z 21 February 2005 Storm Relative Motion 

(SRM) Four Panel, 0.5 deg (UL), 1.3 deg (UR), 2.4 deg (LR), 3.1 deg (LL) 
Inverted red triangle indicates tornado location. 
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Figure 28b 
WSR-88D Davis, CA (KDAX) 2331Z 21 February 2005 Storm Relative Motion (SRM) 

Four Panel, 0.5 deg (UL), 1.3 deg (UR), 2.4 deg (LR), 3.1 deg (LL). 
Yellow circle indicates mesocyclone. 

 
Echo Tops (ET) products from the KDAX radar indicated a lowering of the storm’s echo 
top.  Research has documented how tornadoes from supercells occur during the lowering 
(“collapse”) of the echo top and BWER (Lemon et al., 1979), and it is believed this 
happened in the Dunnigan, CA tornado.  KDAX Echo Tops products (not shown) showed 
the echo tops lowering from 35,000 to 40,000 feet MSL at 2257Z and 2301Z, to 30,000 to 
35,000 feet MSL from 2305Z to 2327Z, and to 25,000 to 30,000 feet MSL at 2331Z, well 
within the time frame when it is believed the Dunnigan, CA tornado occurred. 
 
The 2.4 and 3.1 degree SRM elevation angles indicated the circulation maintained itself 
west of Interstate 5 through 2357Z (3:57 PM PST) as the thunderstorm continued to turn 
more westerly  with time, and tracked westward along the Yolo/Colusa County line.  The 
circulation did lower to the 1.5 degree elevation angle during the 2348Z (3:48 PM PST) 
volume scan (figure not shown), and remained evident in the radar imagery through the 
2357Z (3:57 PM PST) volume scan (figure not shown).  However, it is uncertain if another 
tornado occurred. 
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The continuity and depth of the mesocyclone, and the strength of the rotational velocities 
were greater with the Dunnigan, CA tornado than with the Natomas, CA or Southport, CA 
tornadoes.  Considering the rotational continuity in the mid-levels and the formation and 
lowering of the mid-level mesocylone and eventual tornado, the Dunnigan, CA tornado is 
believed to have followed the supercell cascade conceptual model outlined by Monteverdi 
et al. (2001).  WSR-88D Reflectivity data show a Bounded Weak Echo Region (BWER) 
created by the advection of precipitation around the updraft area in Figures 24a, 26a, 27a 
and 28a.  Also, the WSR-88D SRM data show a persistent mesocyclone, lasting over an 
hour in Figures 24b, 26b, 27b and 28b.  The rear-flank downdraft (RFD) interacted with 
higher helicity values to the south (Figs. 21a-21c) and likely contributed to tornado 
formation.  It is believed that the initial merging of thunderstorm cells (Fig. 24a) precluded 
tornado development, but was then followed by storm reorganization and re-intensification 
to produce the strongest tornado that day (Fig. 23). 
 
4. SUMMARY 
 
The synoptic pattern on 21 February 2005 favored the development of thunderstorms in the 
Central Valley of California with the potential for low-topped or miniature supercells.  
Three of the thirteen tornadoes that occurred during the year in northern California 
occurred on this date.  Fortunately, there were no fatalities or serious injuries from the 
tornadic thunderstorms. 
 
The Southport, CA and Natomas, CA tornadoes occurred in heavily populated areas in the 
Sacramento area, and were highly witnessed and photographed by the public.  These two 
tornadoes developed rapidly and early in the thunderstorm stage, and were classified as F0.  
The Southport, CA tornado was likely misocyclonic, and the result of low level horizontal 
vorticity becoming tilted and stretched vertically along a boundary.  The Natomas and 
Dunnigan, CA tornadoes were determined to have originated from the supercell cascade 
process conceptual model.  The continuity and strength of the low-level mesocyclone was 
greater with the Dunnigan, CA tornado. 
 
One unique characteristic was the location of a closed off mid- and upper-level vorticity 
maximum off the California coast that caused a deep southeast flow over northern 
California.  This resulted in a typical anticyclonically-curving loop of the thunderstorm 
hodograph.  However, the wind shear vectors were uniquely located in the upper left 
quadrant of the hodograph. 
 
The Presidents’ Day 2005 tornadoes in the central valley of northern California illustrated 
the importance of monitoring the storm environment and WSR-88D reflectivity and 
velocity products in anticipating and warning for tornadic storms.  Forecasters can 
heighten their situational awareness by (i) monitoring the position and movement of low-
level convergence boundaries, and (ii) by looking for small circulations along boundaries 
that show continuity and are developing and strengthening vertically near developing 
storms.  Following this strategy can assist the forecaster in detecting potential circulations 
in low-topped supercell thunderstorms that may produce weak tornadoes. 
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