

sure										
• TABLE	6.1									
The Mois and Pres	st Adia	abatio in °C	: Rat /10	e fo 00 m	r Diff and	°F/1	t Ten 000	npera ft	ature	s
	TEMPERATURE (°C)					TEMPERATURE (°F)				
PRESSURE (MB)	-40	-20	0	20	40	-40	-5	30	65	100
1000	9.5	8.6	6.4	4.3	3.0	5.2	4.7	3.5	2.4	1.6
800	9.4	8.3	6.0	3.9		5.2	4.6	3.3	2.2	
600	9.3	7.9	5.4			5.1	4.4	3.0		
400	9.1	7.3				5.0	4.0			
200	8.6					47				

Assessing Atmospheric Stability

- The bottom line -
 - To determine whether or not a parcel will rise or sink in the atmosphere, one must compare the parcels temperature (T_p) with that of the environment (T_e) at some altitude:
 - if $T_p > T_e$ what will the parcel do?
 - if $T_p = T_e$ what will the parcel do?
 - if $T_p < T_e$ what will the parcel do?
- So, to assess stability, what two pieces of information do we need?

Atmospheric Instability and Cloud Development - lifting mechanisms

2. What kind (if any) clouds will you visually observe in different stable environments?

In an absolutely stable environment, no clouds will likely form.

In a *shallow conditionally unstable or absolutely unstable environment*, one may expect clouds to develop, but their vertical growth will be limited, and may observe: cumulus humilis (shallow cumulus) stratocumulus

In a deep conditionally unstable or absolutely unstable environment, one may expect clouds to develop with significant vertical development, and may observe: cumulus congestus cumulonimbus

