Explicit Resolution of **Mountain Wave Turb**

Using the Standard Deviation of the HRRR Vertical Velocity Field

Southwest Aviation Weather Safety Workshop X April 21, 2023

Motivation

- Mountain waves are a significant hazard to aviation and threat to aviation safety
- Traditional diagnostic methods are tedious and time consuming
 - **Rely** on plotting ridge top acceleration and **implying** severity from there
 - Require examining numerous model soundings and/or cross sections to assess static stability, presence of a critical level, etc.
- Can mountain waves be explicitly resolved in a way that makes anticipating severe turb (rather than moderate or less) easier?

The Experiment

- Use the HRRR
 - Generation Finest-scale NWP model readily available
- Look at standard deviation of the omega field within a bounding box, plotted spatially
- Use the 1-hour forecast to allow model time to spin up waves
- Smooth the final product

Analysis vs 1-Hr Forecast

Analysis vs 1-Hr Forecast

DATMOSD

Standard Deviation of Omega in a 5x5 Bounding Box (Pa s⁻¹)

Bounding Box Size

❑ 5x5

- **2** grid points in all directions in addition to centroid
- Smallest box that can capture a wave
- □ Would a bigger box be better?

(I'm not a modeler please don't ask me technical modeling questions!)

Δx to Resolve a Wave

PIREP Data

- Pulled all DJF PIREPs from Jan 2015 - Dec 2022
- Subsetted to a study area over the Rockies
- Looked at only Turb PIREPs, leaving 27,350 PIREPs
 - 2993 featured "MTN WAVE" in the REPORT string

PIREP Data

- Combined LGT-MOD with LGT, and MOD-SEV with SEV, to make the lengths slightly more equal
 - Way more MODs than any other intensity
- Any "MTN WAVE" PIREPs without an intensity given were manually assigned one
 - □ +/- 15 kts or gain/loss 350 ft \rightarrow MOD
 - □ +/- 25 kts <u>or</u> gain/loss 600 ft \rightarrow SEV

HRRR Data

- □ 1-hour forecast at closest time to time of PIREP, i.e.
 - $\square \quad PIREP \text{ at } 1925z \rightarrow HRRR \text{ valid at } 1900z \text{ (18z run F01)}$
 - □ PIREP at 1935z \rightarrow HRRR valid at 2000z (19z run F01)
- StDev value calculated for bounding box around grid point closest to PIREP location

Caveats

PIREP data is messy!

- Lots of duplicates and incorrect locations
- Not all turb over CO is from mountain waves
 - But most mountain wave turb is just reported as turb rather than MTN WAVE

Smoothing

- All plots will show results for using the 40-point Gaussian smoothing
- Results largely similar regardless of degree of smoothing but 40-point showed most difference (lowest p-value) between MODs and SEVs

My guess here is that the NEGs are contaminated by PIREPs that should be classified at a higher intensity but didn't get caught by my intensity assignment scheme

Compared to Just Wind

Same plots but looking at 600 hPa (~FL140) **u component** of wind

- Making an assumption that u wind represents the cross-barrier component
- Looked at wind value over highest terrain grid point upstream (west) of PIREP location
- Used RAP instead of HRRR
 - 13 km grid spacing should tamp down noise, closer to what we look at in ops (NAM upscaled to 32 km)
- Not perfect but needed something that could be calculated systematically for 27,350 PIREPs
- Should be a good approximation of "ridge top flow"

600 hPa U-Wind Above Highest Elevation Along Lat Line All Altitudes

Data Analysis

- All variables for all turb intensities have a long positive tail
- NEG, LGT, and MOD show a trend, but biggest difference by far is between MOD and SEV
 - Which is what we want!
- Visually more separation in interquartile ranges with StDev Omega than with just ridge-top flow
- However, values seemed low...
- What about the maximum value at or west of the PIREP location?
 - Looked at 2 grid points north/south/east, and all grid points west to edge of domain

Final Data Analysis

- Enhanced separation between MODs and SEVs overall with max upstream values relative to at-point values
- Lower values at higher altitudes
 - HRRR probably (likely) not resolving tropopause wave breaking well
 - Want to use different thresholds for high vs low altitudes
- MOD-SEV separation is somewhat reduced for low altitudes, but

LGT-MOD separation increases

- Ryan's Hypothesis: light aircraft reporting SEV at low altitudes mixed with airliners reporting MOD
- □ Higher proportion of SEVs in low altitudes vs high altitudes

Example

November 9, 2022

HRRR Forecast | FHR: 01 | VALID: 1900 UTC Wed Nov 09 2022

HRRR Forecast | FHR: 01 | VALID: 2000 UTC Wed Nov 09 2022

HRRR Forecast | FHR: 01 | VALID: 2100 UTC Wed Nov 09 2022

Special Thanks

Contact Info

ryan.connelly@noaa.gov

Bonus Slides

